Cargando…

HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus

Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Li-Mei, Jiang, Bei-Ge, Sun, Liang-Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921476/
https://www.ncbi.nlm.nih.gov/pubmed/35299962
http://dx.doi.org/10.3389/fendo.2022.829565
_version_ 1784669330099666944
author Li, Li-Mei
Jiang, Bei-Ge
Sun, Liang-Liang
author_facet Li, Li-Mei
Jiang, Bei-Ge
Sun, Liang-Liang
author_sort Li, Li-Mei
collection PubMed
description Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), or other according to the etiology. The clinical manifestations are more or less similar among the different types of diabetes, and each type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing between various types of diabetes and defining their subtypes are major challenges hindering the precise treatment of the disease. T2D is the main type of diabetes in humans as well as the most heterogeneous. Fortunately, some studies have shown that variants of certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate personalized treatment of the disease by exploring the function of the signal genes involved. Hepatocyte nuclear factor 1 homeobox A (HNF1α) is widely expressed in pancreatic β cells, the liver, the intestines, and other organs. HNF1α is highly polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of the young type 3 (MODY3) while some others do not cause MODY3 but increase the susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also differ. MODY3 is among the most common types of MODY, which is a form of monogenic diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial diseases caused by both genetic and environmental factors. Different types of diabetes mellitus have different clinical phenotypes and treatments. This review focuses on HNF1α gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the related pathogenesis and treatment methods. We hope this review will provide a valuable reference for the precise and individualized treatment of diabetes caused by abnormal HNF1α by summarizing the clinical heterogeneity of blood glucose abnormalities caused by HNF1α mutation.
format Online
Article
Text
id pubmed-8921476
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89214762022-03-16 HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus Li, Li-Mei Jiang, Bei-Ge Sun, Liang-Liang Front Endocrinol (Lausanne) Endocrinology Diabetes, a disease characterized by hyperglycemia, has a serious impact on the lives and families of patients as well as on society. Diabetes is a group of highly heterogeneous metabolic diseases that can be classified as type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM), or other according to the etiology. The clinical manifestations are more or less similar among the different types of diabetes, and each type is highly heterogeneous due to different pathogenic factors. Therefore, distinguishing between various types of diabetes and defining their subtypes are major challenges hindering the precise treatment of the disease. T2D is the main type of diabetes in humans as well as the most heterogeneous. Fortunately, some studies have shown that variants of certain genes involved in monogenic diabetes also increase the risk of T2D. We hope this finding will enable breakthroughs regarding the pathogenesis of T2D and facilitate personalized treatment of the disease by exploring the function of the signal genes involved. Hepatocyte nuclear factor 1 homeobox A (HNF1α) is widely expressed in pancreatic β cells, the liver, the intestines, and other organs. HNF1α is highly polymorphic, but lacks a mutation hot spot. Mutations can be found at any site of the gene. Some single nucleotide polymorphisms (SNPs) cause maturity-onset diabetes of the young type 3 (MODY3) while some others do not cause MODY3 but increase the susceptibility to T2D or GDM. The phenotypes of MODY3 caused by different SNPs also differ. MODY3 is among the most common types of MODY, which is a form of monogenic diabetes mellitus caused by a single gene mutation. Both T2D and GDM are multifactorial diseases caused by both genetic and environmental factors. Different types of diabetes mellitus have different clinical phenotypes and treatments. This review focuses on HNF1α gene polymorphisms, HNF1A-MODY3, HNF1A-associated T2D and GDM, and the related pathogenesis and treatment methods. We hope this review will provide a valuable reference for the precise and individualized treatment of diabetes caused by abnormal HNF1α by summarizing the clinical heterogeneity of blood glucose abnormalities caused by HNF1α mutation. Frontiers Media S.A. 2022-03-01 /pmc/articles/PMC8921476/ /pubmed/35299962 http://dx.doi.org/10.3389/fendo.2022.829565 Text en Copyright © 2022 Li, Jiang and Sun https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Endocrinology
Li, Li-Mei
Jiang, Bei-Ge
Sun, Liang-Liang
HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title_full HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title_fullStr HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title_full_unstemmed HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title_short HNF1A:From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus
title_sort hnf1a:from monogenic diabetes to type 2 diabetes and gestational diabetes mellitus
topic Endocrinology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921476/
https://www.ncbi.nlm.nih.gov/pubmed/35299962
http://dx.doi.org/10.3389/fendo.2022.829565
work_keys_str_mv AT lilimei hnf1afrommonogenicdiabetestotype2diabetesandgestationaldiabetesmellitus
AT jiangbeige hnf1afrommonogenicdiabetestotype2diabetesandgestationaldiabetesmellitus
AT sunliangliang hnf1afrommonogenicdiabetestotype2diabetesandgestationaldiabetesmellitus