Cargando…
The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review
Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in who...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921566/ https://www.ncbi.nlm.nih.gov/pubmed/35046082 http://dx.doi.org/10.1136/ijgc-2021-002473 |
Sumario: | Radiotherapy with cisplatin (chemoradiation) is the standard treatment for women with locally advanced cervical cancer. Radiotherapy with deep hyperthermia (thermoradiation) is a well established alternative, but is rarely offered as an alternative to chemoradiation, particularly for patients in whom cisplatin is contraindicated. The scope of this review is to provide an overview of the biological rationale of hyperthermia treatment delivery, including patient workflow, and the clinical effectiveness of hyperthermia as a radiosensitizer in the treatment of cervical cancer. Hyperthermia is especially effective in hypoxic and nutrient deprived areas of the tumor where radiotherapy is less effective. Its radiosensitizing effectiveness depends on the temperature level, duration of treatment, and the time interval between radiotherapy and hyperthermia. High quality hyperthermia treatment requires an experienced team, adequate online adaptive treatment planning, and is preferably performed using a phased array radiative locoregional hyperthermia device to achieve the optimal thermal dose effect. Hyperthermia is well tolerated and generally leads to only mild toxicity, such as patient discomfort. Patients in whom cisplatin is contraindicated should therefore be referred to a hyperthermia center for thermoradiation. |
---|