Cargando…
TIGER: technical variation elimination for metabolomics data using ensemble learning architecture
Large metabolomics datasets inevitably contain unwanted technical variations which can obscure meaningful biological signals and affect how this information is applied to personalized healthcare. Many methods have been developed to handle unwanted variations. However, the underlying assumptions of m...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921617/ https://www.ncbi.nlm.nih.gov/pubmed/34981111 http://dx.doi.org/10.1093/bib/bbab535 |