Cargando…
TIGER: technical variation elimination for metabolomics data using ensemble learning architecture
Large metabolomics datasets inevitably contain unwanted technical variations which can obscure meaningful biological signals and affect how this information is applied to personalized healthcare. Many methods have been developed to handle unwanted variations. However, the underlying assumptions of m...
Autores principales: | Han, Siyu, Huang, Jialing, Foppiano, Francesco, Prehn, Cornelia, Adamski, Jerzy, Suhre, Karsten, Li, Ying, Matullo, Giuseppe, Schliess, Freimut, Gieger, Christian, Peters, Annette, Wang-Sattler, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921617/ https://www.ncbi.nlm.nih.gov/pubmed/34981111 http://dx.doi.org/10.1093/bib/bbab535 |
Ejemplares similares
-
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches
por: Wu, Andy J, et al.
Publicado: (2023) -
Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning
por: Chatzigoulas, Alexios, et al.
Publicado: (2022) -
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
por: Conev, Anja, et al.
Publicado: (2023) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021)