Cargando…
TP53_PROF: a machine learning model to predict impact of missense mutations in TP53
Correctly identifying the true driver mutations in a patient’s tumor is a major challenge in precision oncology. Most efforts address frequent mutations, leaving medium- and low-frequency variants mostly unaddressed. For TP53, this identification is crucial for both somatic and germline mutations, w...
Autores principales: | Ben-Cohen, Gil, Doffe, Flora, Devir, Michal, Leroy, Bernard, Soussi, Thierry, Rosenberg, Shai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921628/ https://www.ncbi.nlm.nih.gov/pubmed/35043155 http://dx.doi.org/10.1093/bib/bbab524 |
Ejemplares similares
-
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
por: Pan, Qisheng, et al.
Publicado: (2023) -
Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene
por: Doffe, Flora, et al.
Publicado: (2020) -
The TP53 website: an integrative resource centre for the TP53 mutation database and TP53 mutant analysis
por: Leroy, Bernard, et al.
Publicado: (2013) -
Comprehensive assessment of TP53 loss of function using multiple combinatorial mutagenesis libraries
por: Carbonnier, Vincent, et al.
Publicado: (2020) -
A statistical framework for predicting critical regions of p53-dependent enhancers
por: Niu, Xiaohui, et al.
Publicado: (2020)