Cargando…
PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network
Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro s...
Autores principales: | Wang, Xiaowen, Zhu, Hongming, Jiang, Yizhi, Li, Yulong, Tang, Chen, Chen, Xiaohan, Li, Yunjie, Liu, Qi, Liu, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921631/ https://www.ncbi.nlm.nih.gov/pubmed/35043159 http://dx.doi.org/10.1093/bib/bbab587 |
Ejemplares similares
-
Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies
por: Yeung, Wayland, et al.
Publicado: (2023) -
Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings
por: Yeung, Wayland, et al.
Publicado: (2023) -
AD-Syn-Net: systematic identification of Alzheimer’s disease-associated mutation and co-mutation vulnerabilities via deep learning
por: Pan, Xingxin, et al.
Publicado: (2023) -
Assessing protein model quality based on deep graph coupled networks using protein language model
por: Liu, Dong, et al.
Publicado: (2023) -
RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins
por: Liu, Yumeng, et al.
Publicado: (2020)