Cargando…

Ontology-aware neural network: a general framework for pattern mining from microbiome data

With the rapid accumulation of microbiome data around the world, numerous computational bioinformatics methods have been developed for pattern mining from such paramount microbiome data. Current microbiome data mining methods, such as gene and species mining, rely heavily on sequence comparison. Mos...

Descripción completa

Detalles Bibliográficos
Autores principales: Zha, Yuguo, Ning, Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921649/
https://www.ncbi.nlm.nih.gov/pubmed/35091743
http://dx.doi.org/10.1093/bib/bbac005
_version_ 1784669365130493952
author Zha, Yuguo
Ning, Kang
author_facet Zha, Yuguo
Ning, Kang
author_sort Zha, Yuguo
collection PubMed
description With the rapid accumulation of microbiome data around the world, numerous computational bioinformatics methods have been developed for pattern mining from such paramount microbiome data. Current microbiome data mining methods, such as gene and species mining, rely heavily on sequence comparison. Most of these methods, however, have a clear trade-off, particularly, when it comes to big-data analytical efficiency and accuracy. Microbiome entities are usually organized in ontology structures, and pattern mining methods that have considered ontology structures could offer advantages in mining efficiency and accuracy. Here, we have summarized the ontology-aware neural network (ONN) as a novel framework for microbiome data mining. We have discussed the applications of ONN in multiple contexts, including gene mining, species mining and microbial community dynamic pattern mining. We have then highlighted one of the most important characteristics of ONN, namely, novel knowledge discovery, which makes ONN a standout among all microbiome data mining methods. Finally, we have provided several applications to showcase the advantage of ONN over other methods in microbiome data mining. In summary, ONN represents a paradigm shift for pattern mining from microbiome data: from traditional machine learning approach to ontology-aware and model-based approach, which has found its broad application scenarios in microbiome data mining.
format Online
Article
Text
id pubmed-8921649
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-89216492022-03-15 Ontology-aware neural network: a general framework for pattern mining from microbiome data Zha, Yuguo Ning, Kang Brief Bioinform Review With the rapid accumulation of microbiome data around the world, numerous computational bioinformatics methods have been developed for pattern mining from such paramount microbiome data. Current microbiome data mining methods, such as gene and species mining, rely heavily on sequence comparison. Most of these methods, however, have a clear trade-off, particularly, when it comes to big-data analytical efficiency and accuracy. Microbiome entities are usually organized in ontology structures, and pattern mining methods that have considered ontology structures could offer advantages in mining efficiency and accuracy. Here, we have summarized the ontology-aware neural network (ONN) as a novel framework for microbiome data mining. We have discussed the applications of ONN in multiple contexts, including gene mining, species mining and microbial community dynamic pattern mining. We have then highlighted one of the most important characteristics of ONN, namely, novel knowledge discovery, which makes ONN a standout among all microbiome data mining methods. Finally, we have provided several applications to showcase the advantage of ONN over other methods in microbiome data mining. In summary, ONN represents a paradigm shift for pattern mining from microbiome data: from traditional machine learning approach to ontology-aware and model-based approach, which has found its broad application scenarios in microbiome data mining. Oxford University Press 2022-01-29 /pmc/articles/PMC8921649/ /pubmed/35091743 http://dx.doi.org/10.1093/bib/bbac005 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Zha, Yuguo
Ning, Kang
Ontology-aware neural network: a general framework for pattern mining from microbiome data
title Ontology-aware neural network: a general framework for pattern mining from microbiome data
title_full Ontology-aware neural network: a general framework for pattern mining from microbiome data
title_fullStr Ontology-aware neural network: a general framework for pattern mining from microbiome data
title_full_unstemmed Ontology-aware neural network: a general framework for pattern mining from microbiome data
title_short Ontology-aware neural network: a general framework for pattern mining from microbiome data
title_sort ontology-aware neural network: a general framework for pattern mining from microbiome data
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921649/
https://www.ncbi.nlm.nih.gov/pubmed/35091743
http://dx.doi.org/10.1093/bib/bbac005
work_keys_str_mv AT zhayuguo ontologyawareneuralnetworkageneralframeworkforpatternminingfrommicrobiomedata
AT ningkang ontologyawareneuralnetworkageneralframeworkforpatternminingfrommicrobiomedata