Cargando…
Feeding Practice and Delivery Mode Are Determinants of Vitamin K in the Infant Gut: An Exploratory Analysis
BACKGROUND: Infants have low stores of vitamin K at birth. Dietary intake of phylloquinone (PK) differs dramatically by infant feeding practice, but the contribution of microbially produced vitamin K (menaquinones) to infant vitamin K status is not well understood. OBJECTIVES: The objective of this...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921654/ https://www.ncbi.nlm.nih.gov/pubmed/35295713 http://dx.doi.org/10.1093/cdn/nzac019 |
Sumario: | BACKGROUND: Infants have low stores of vitamin K at birth. Dietary intake of phylloquinone (PK) differs dramatically by infant feeding practice, but the contribution of microbially produced vitamin K (menaquinones) to infant vitamin K status is not well understood. OBJECTIVES: The objective of this study was to investigate determinants of infant fecal vitamin K profiles in mother-infant dyads at 6 wk postpartum. METHODS: Fecal and breast milk samples were collected from a subsample of breastfeeding (n = 23) or formula-feeding (n = 23) mother and infant dyads, delivered vaginally (n = 26) or by cesarean section (CS) (n = 20) in the Synergistic Theory and Research on Nutrition and Growth (STRONG) Kids 2 cohort. Vitamin K concentrations in breast milk and feces were analyzed by LC/MS and/or HPLC. Fecal bacterial metagenomes were analyzed to derive taxonomy and vitamin K biosynthetic genes. Multivariate linear modeling was used to assess effects of delivery and feeding modes on infant fecal vitamin K. RESULTS: Breast milk contained 1.3 ± 0.2 ng/mL PK, and formula was reported to contain 52 ng/mL PK. Fecal PK was 38-times higher (P < 0.001) in formula-fed than breastfed infants. Infant fecal menaquinones (MKn) MK6, MK7, MK12, and MK13 were higher (P < 0.001) in formula-fed than breastfed infants, whereas MK8 predominated in breastfed and was 5-times higher than formula-fed infants. Total MKn were greater (P < 0.001) in vaginally delivered than CS infants. Relative abundances of 33 bacterial species were affected by feeding mode, 2 by delivery mode, and 4 by both (P < 0.05). Bacterial gene content of 5/12 vitamin K biosynthetic genes were greater (P < 0.05) in breastfed compared with formula-fed infants, and 1 differed by delivery mode. CONCLUSIONS: Feeding practice and delivery mode influence bacterial vitamin K production in the infant gut. High concentrations of unmetabolized PK in feces of formula-fed infants suggests formula PK content exceeds the absorptive capacity of the infant gut. |
---|