Cargando…
Predicting protein–membrane interfaces of peripheral membrane proteins using ensemble machine learning
Abnormal protein–membrane attachment is involved in deregulated cellular pathways and in disease. Therefore, the possibility to modulate protein–membrane interactions represents a new promising therapeutic strategy for peripheral membrane proteins that have been considered so far undruggable. A majo...
Autores principales: | Chatzigoulas, Alexios, Cournia, Zoe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921665/ https://www.ncbi.nlm.nih.gov/pubmed/35152294 http://dx.doi.org/10.1093/bib/bbab518 |
Ejemplares similares
-
DREAMM: a web-based server for drugging protein-membrane interfaces as a novel workflow for targeted drug design
por: Chatzigoulas, Alexios, et al.
Publicado: (2022) -
Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power
por: Yu, Tzu-Hui, et al.
Publicado: (2021) -
STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction
por: Basith, Shaherin, et al.
Publicado: (2021) -
TIGER: technical variation elimination for metabolomics data using ensemble learning architecture
por: Han, Siyu, et al.
Publicado: (2022) -
EnGens: a computational framework for generation and analysis of representative protein conformational ensembles
por: Conev, Anja, et al.
Publicado: (2023)