Cargando…

Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries

Although solid composite electrolytes show tremendous potential for the practical solid‐state lithium metal batteries, searching for a straightforward tactic to promote the ion conduction at electrolyte/electrode interface, especially settling lithium dendrites formation caused by the concentration...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Rong, Liao, Wenchao, Fan, Shuangxian, Chen, Dazhu, Tang, Jiaoning, Yang, Yong, Liu, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922129/
https://www.ncbi.nlm.nih.gov/pubmed/35037427
http://dx.doi.org/10.1002/advs.202104506
_version_ 1784669465827344384
author Fan, Rong
Liao, Wenchao
Fan, Shuangxian
Chen, Dazhu
Tang, Jiaoning
Yang, Yong
Liu, Chen
author_facet Fan, Rong
Liao, Wenchao
Fan, Shuangxian
Chen, Dazhu
Tang, Jiaoning
Yang, Yong
Liu, Chen
author_sort Fan, Rong
collection PubMed
description Although solid composite electrolytes show tremendous potential for the practical solid‐state lithium metal batteries, searching for a straightforward tactic to promote the ion conduction at electrolyte/electrode interface, especially settling lithium dendrites formation caused by the concentration gradient polarization, are still long‐standing problems. Here, the authors report a corrugated 3D nanowires‐bulk ceramic‐nanowires (NCN) skeleton reinforced composite electrolyte with regulated interfacial Li‐ion transport behavior. The special and integrated NCN skeleton endows the electrolyte with fast Li‐ion transfer and solves the Li(+) concentration polarization at electrode/electrolyte interface, thereby eliminating the energy barrier originated from the redistribution of charge carriers and offering homogeneous interfacial Li‐ion flux on lithium anode. As a “double insurance”, the bulk ceramic sheet in 3D framework enables the electrolyte to block the mobility of anions. The rational designed NCN composite electrolyte exhibits excellent ionic conductivity and the assembled all‐solid‐state battery possesses 90.2% capacity retention after 500 cycles. The proposed strategy affords a special insight in designing high‐performance solid composite electrolytes.
format Online
Article
Text
id pubmed-8922129
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89221292022-03-21 Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries Fan, Rong Liao, Wenchao Fan, Shuangxian Chen, Dazhu Tang, Jiaoning Yang, Yong Liu, Chen Adv Sci (Weinh) Research Articles Although solid composite electrolytes show tremendous potential for the practical solid‐state lithium metal batteries, searching for a straightforward tactic to promote the ion conduction at electrolyte/electrode interface, especially settling lithium dendrites formation caused by the concentration gradient polarization, are still long‐standing problems. Here, the authors report a corrugated 3D nanowires‐bulk ceramic‐nanowires (NCN) skeleton reinforced composite electrolyte with regulated interfacial Li‐ion transport behavior. The special and integrated NCN skeleton endows the electrolyte with fast Li‐ion transfer and solves the Li(+) concentration polarization at electrode/electrolyte interface, thereby eliminating the energy barrier originated from the redistribution of charge carriers and offering homogeneous interfacial Li‐ion flux on lithium anode. As a “double insurance”, the bulk ceramic sheet in 3D framework enables the electrolyte to block the mobility of anions. The rational designed NCN composite electrolyte exhibits excellent ionic conductivity and the assembled all‐solid‐state battery possesses 90.2% capacity retention after 500 cycles. The proposed strategy affords a special insight in designing high‐performance solid composite electrolytes. John Wiley and Sons Inc. 2022-01-17 /pmc/articles/PMC8922129/ /pubmed/35037427 http://dx.doi.org/10.1002/advs.202104506 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Fan, Rong
Liao, Wenchao
Fan, Shuangxian
Chen, Dazhu
Tang, Jiaoning
Yang, Yong
Liu, Chen
Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title_full Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title_fullStr Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title_full_unstemmed Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title_short Regulating Interfacial Li‐Ion Transport via an Integrated Corrugated 3D Skeleton in Solid Composite Electrolyte for All‐Solid‐State Lithium Metal Batteries
title_sort regulating interfacial li‐ion transport via an integrated corrugated 3d skeleton in solid composite electrolyte for all‐solid‐state lithium metal batteries
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922129/
https://www.ncbi.nlm.nih.gov/pubmed/35037427
http://dx.doi.org/10.1002/advs.202104506
work_keys_str_mv AT fanrong regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT liaowenchao regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT fanshuangxian regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT chendazhu regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT tangjiaoning regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT yangyong regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries
AT liuchen regulatinginterfacialliiontransportviaanintegratedcorrugated3dskeletoninsolidcompositeelectrolyteforallsolidstatelithiummetalbatteries