Cargando…

Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction

Evolving cost‐effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP‒...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekhar, S. Chandra, Ramulu, Bhimanaboina, Han, Man Ho, Arbaz, Shaik Junied, Nagaraju, Manchi, Oh, Hyung‐Suk, Yu, Jae Su
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922135/
https://www.ncbi.nlm.nih.gov/pubmed/35064771
http://dx.doi.org/10.1002/advs.202104877
_version_ 1784669467276476416
author Sekhar, S. Chandra
Ramulu, Bhimanaboina
Han, Man Ho
Arbaz, Shaik Junied
Nagaraju, Manchi
Oh, Hyung‐Suk
Yu, Jae Su
author_facet Sekhar, S. Chandra
Ramulu, Bhimanaboina
Han, Man Ho
Arbaz, Shaik Junied
Nagaraju, Manchi
Oh, Hyung‐Suk
Yu, Jae Su
author_sort Sekhar, S. Chandra
collection PubMed
description Evolving cost‐effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP‒CoP(2) (CNP‒CP) composite is in situ deposited on carbon fabric by a one‐step hydrothermal technique. The CNP‒CP reveals hybrid nanoarchitecture (3D‐on‐1D HNA), i.e., cashew fruit‐like nanostructures and nanocones. The CNP‒CP HNA electrode delivers higher areal capacity (82.8 μAh cm(–2)) than the other electrodes. Furthermore, a hybrid cell assembled with CNP‒CP HNA shows maximum energy and power densities of 31 μWh cm(–2) and 10.9 mW cm(–2), respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X‐ray absorption near‐edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP‒CP material during real‐time electrochemical reactions.  Besides, a quasi‐solid‐state device unveils its practicability by powering electronic components. Meanwhile, the CNP‒CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec(–1)) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP‐based materials for multifunctional applications.
format Online
Article
Text
id pubmed-8922135
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89221352022-03-21 Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction Sekhar, S. Chandra Ramulu, Bhimanaboina Han, Man Ho Arbaz, Shaik Junied Nagaraju, Manchi Oh, Hyung‐Suk Yu, Jae Su Adv Sci (Weinh) Research Articles Evolving cost‐effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP‒CoP(2) (CNP‒CP) composite is in situ deposited on carbon fabric by a one‐step hydrothermal technique. The CNP‒CP reveals hybrid nanoarchitecture (3D‐on‐1D HNA), i.e., cashew fruit‐like nanostructures and nanocones. The CNP‒CP HNA electrode delivers higher areal capacity (82.8 μAh cm(–2)) than the other electrodes. Furthermore, a hybrid cell assembled with CNP‒CP HNA shows maximum energy and power densities of 31 μWh cm(–2) and 10.9 mW cm(–2), respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X‐ray absorption near‐edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP‒CP material during real‐time electrochemical reactions.  Besides, a quasi‐solid‐state device unveils its practicability by powering electronic components. Meanwhile, the CNP‒CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec(–1)) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP‐based materials for multifunctional applications. John Wiley and Sons Inc. 2022-01-22 /pmc/articles/PMC8922135/ /pubmed/35064771 http://dx.doi.org/10.1002/advs.202104877 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Sekhar, S. Chandra
Ramulu, Bhimanaboina
Han, Man Ho
Arbaz, Shaik Junied
Nagaraju, Manchi
Oh, Hyung‐Suk
Yu, Jae Su
Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title_full Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title_fullStr Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title_full_unstemmed Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title_short Unraveling CoNiP‒CoP(2) 3D‐on‐1D Hybrid Nanoarchitecture for Long‐Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction
title_sort unraveling conip‒cop(2) 3d‐on‐1d hybrid nanoarchitecture for long‐lasting electrochemical hybrid cells and oxygen evolution reaction
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922135/
https://www.ncbi.nlm.nih.gov/pubmed/35064771
http://dx.doi.org/10.1002/advs.202104877
work_keys_str_mv AT sekharschandra unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT ramulubhimanaboina unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT hanmanho unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT arbazshaikjunied unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT nagarajumanchi unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT ohhyungsuk unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction
AT yujaesu unravelingconipcop23don1dhybridnanoarchitectureforlonglastingelectrochemicalhybridcellsandoxygenevolutionreaction