Cargando…
Automated Pulmonary Embolism Risk Assessment Using the Wells Criteria: Validation Study
BACKGROUND: Computed tomography pulmonary angiography (CTPA) is frequently used in the emergency department (ED) for the diagnosis of pulmonary embolism (PE), while posing risk for contrast-induced nephropathy and radiation-induced malignancy. OBJECTIVE: We aimed to create an automated process to ca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922138/ https://www.ncbi.nlm.nih.gov/pubmed/35225812 http://dx.doi.org/10.2196/32230 |
Sumario: | BACKGROUND: Computed tomography pulmonary angiography (CTPA) is frequently used in the emergency department (ED) for the diagnosis of pulmonary embolism (PE), while posing risk for contrast-induced nephropathy and radiation-induced malignancy. OBJECTIVE: We aimed to create an automated process to calculate the Wells score for pulmonary embolism for patients in the ED, which could potentially reduce unnecessary CTPA testing. METHODS: We designed an automated process using electronic health records data elements, including using a combinatorial keyword search method to query free-text fields, and calculated automated Wells scores for a sample of all adult ED encounters that resulted in a CTPA study for PE at 2 tertiary care hospitals in New York, over a 2-month period. To validate the automated process, the scores were compared to those derived from a 2-clinician chart review. RESULTS: A total of 202 ED encounters resulted in a completed CTPA to form the retrospective study cohort. Patients classified as “PE likely” by the automated process (126/202, 62%) had a PE prevalence of 15.9%, whereas those classified as “PE unlikely” (76/202, 38%; Wells score >4) had a PE prevalence of 7.9%. With respect to classification of the patient as “PE likely,” the automated process achieved an accuracy of 92.1% when compared with the chart review, with sensitivity, specificity, positive predictive value, and negative predictive value of 93%, 90.5%, 94.4%, and 88.2%, respectively. CONCLUSIONS: This was a successful development and validation of an automated process using electronic health records data elements, including free-text fields, to classify risk for PE in ED visits. |
---|