Cargando…
Applications and Challenges of Machine Learning Methods in Alzheimer's Disease Multi-Source Data Analysis
BACKGROUND: Recent development in neuroimaging and genetic testing technologies have made it possible to measure pathological features associated with Alzheimer's disease (AD) in vivo. Mining potential molecular markers of AD from high-dimensional, multi-modal neuroimaging and omics data will p...
Autores principales: | Li, Xiong, Qiu, Yangping, Zhou, Juan, Xie, Ziruo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922327/ https://www.ncbi.nlm.nih.gov/pubmed/35386189 http://dx.doi.org/10.2174/1389202923666211216163049 |
Ejemplares similares
-
Machine learning applications for multi-source data of edible crops: A review of current trends and future prospects
por: Zhang, Yanying, et al.
Publicado: (2023) -
Daily Soil Moisture Retrieval by Fusing CYGNSS and Multi-Source Auxiliary Data Using Machine Learning Methods
por: Yang, Ting, et al.
Publicado: (2023) -
Dealing with dimensionality: the application of machine learning to multi-omics data
por: Feldner-Busztin, Dylan, et al.
Publicado: (2023) -
Applicability of Machine Learning Methods to Multi-label Medical Text Classification
por: Lenivtceva, Iuliia, et al.
Publicado: (2020) -
Editorial: Application of Novel Statistical and Machine-Learning Methods to High-Dimensional Clinical Cancer and (Multi-)Omics Data
por: Xu, Chao, et al.
Publicado: (2021)