Cargando…
Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics
To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reliability of diffusion metrics were evaluated with 20 patients. Image noise was significa...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922344/ https://www.ncbi.nlm.nih.gov/pubmed/32963184 http://dx.doi.org/10.2463/mrms.tn.2020-0061 |
_version_ | 1784669505269530624 |
---|---|
author | Sagawa, Hajime Fushimi, Yasutaka Nakajima, Satoshi Fujimoto, Koji Miyake, Kanae Kawai Numamoto, Hitomi Koizumi, Koji Nambu, Masahito Kataoka, Hiroharu Nakamoto, Yuji Saga, Tsuneo |
author_facet | Sagawa, Hajime Fushimi, Yasutaka Nakajima, Satoshi Fujimoto, Koji Miyake, Kanae Kawai Numamoto, Hitomi Koizumi, Koji Nambu, Masahito Kataoka, Hiroharu Nakamoto, Yuji Saga, Tsuneo |
author_sort | Sagawa, Hajime |
collection | PubMed |
description | To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reliability of diffusion metrics were evaluated with 20 patients. Image noise was significantly decreased with dDLR. Although fractional anisotropy (FA) of deep gray matter was overestimated when the number of image acquisitions was one (NAQ1), FA in NAQ1 with dDLR became closer to that in NAQ5. |
format | Online Article Text |
id | pubmed-8922344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Japanese Society for Magnetic Resonance in Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-89223442022-03-28 Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics Sagawa, Hajime Fushimi, Yasutaka Nakajima, Satoshi Fujimoto, Koji Miyake, Kanae Kawai Numamoto, Hitomi Koizumi, Koji Nambu, Masahito Kataoka, Hiroharu Nakamoto, Yuji Saga, Tsuneo Magn Reson Med Sci Technical Note To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reliability of diffusion metrics were evaluated with 20 patients. Image noise was significantly decreased with dDLR. Although fractional anisotropy (FA) of deep gray matter was overestimated when the number of image acquisitions was one (NAQ1), FA in NAQ1 with dDLR became closer to that in NAQ5. Japanese Society for Magnetic Resonance in Medicine 2020-09-18 /pmc/articles/PMC8922344/ /pubmed/32963184 http://dx.doi.org/10.2463/mrms.tn.2020-0061 Text en © 2020 Japanese Society for Magnetic Resonance in Medicine https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | Technical Note Sagawa, Hajime Fushimi, Yasutaka Nakajima, Satoshi Fujimoto, Koji Miyake, Kanae Kawai Numamoto, Hitomi Koizumi, Koji Nambu, Masahito Kataoka, Hiroharu Nakamoto, Yuji Saga, Tsuneo Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title | Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title_full | Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title_fullStr | Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title_full_unstemmed | Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title_short | Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics |
title_sort | deep learning-based noise reduction for fast volume diffusion tensor imaging: assessing the noise reduction effect and reliability of diffusion metrics |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922344/ https://www.ncbi.nlm.nih.gov/pubmed/32963184 http://dx.doi.org/10.2463/mrms.tn.2020-0061 |
work_keys_str_mv | AT sagawahajime deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT fushimiyasutaka deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT nakajimasatoshi deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT fujimotokoji deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT miyakekanaekawai deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT numamotohitomi deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT koizumikoji deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT nambumasahito deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT kataokahiroharu deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT nakamotoyuji deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics AT sagatsuneo deeplearningbasednoisereductionforfastvolumediffusiontensorimagingassessingthenoisereductioneffectandreliabilityofdiffusionmetrics |