Cargando…
Deep Learning-based Noise Reduction for Fast Volume Diffusion Tensor Imaging: Assessing the Noise Reduction Effect and Reliability of Diffusion Metrics
To assess the feasibility of a denoising approach with deep learning-based reconstruction (dDLR) for fast volume simultaneous multi-slice diffusion tensor imaging of the brain, noise reduction effects and the reliability of diffusion metrics were evaluated with 20 patients. Image noise was significa...
Autores principales: | Sagawa, Hajime, Fushimi, Yasutaka, Nakajima, Satoshi, Fujimoto, Koji, Miyake, Kanae Kawai, Numamoto, Hitomi, Koizumi, Koji, Nambu, Masahito, Kataoka, Hiroharu, Nakamoto, Yuji, Saga, Tsuneo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922344/ https://www.ncbi.nlm.nih.gov/pubmed/32963184 http://dx.doi.org/10.2463/mrms.tn.2020-0061 |
Ejemplares similares
-
Diagnostic advantage of thin slice 2D MRI and multiplanar reconstruction of the knee joint using deep learning based denoising approach
por: Kakigi, Takahide, et al.
Publicado: (2022) -
Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance
por: Oshima, Sonoko, et al.
Publicado: (2023) -
Noise reduction of diffusion tensor images by sparse representation and dictionary learning
por: Kong, Youyong, et al.
Publicado: (2016) -
Diffusion due to RF noise
por: Dôme, Georges
Publicado: (1987) -
Noise reduction profile: A new method for evaluation of noise reduction techniques in CT
por: Hasegawa, Akira, et al.
Publicado: (2021)