Cargando…
Introducing Swish and Parallelized Blind Removal Improves the Performance of a Convolutional Neural Network in Denoising MR Images
PURPOSE: To improve the performance of a denoising convolutional neural network (DnCNN) and to make it applicable to images with inhomogeneous noise, a refinement involving an activation function (AF) and an application of the refined method for inhomogeneous-noise images was examined in combination...
Autores principales: | Sugai, Taro, Takano, Kohei, Ouchi, Shohei, Ito, Satoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922346/ https://www.ncbi.nlm.nih.gov/pubmed/33583867 http://dx.doi.org/10.2463/mrms.mp.2020-0073 |
Ejemplares similares
-
Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain
por: Ouchi, Shohei, et al.
Publicado: (2020) -
A Novel Framework for Melanoma Lesion Segmentation Using Multiparallel Depthwise Separable and Dilated Convolutions with Swish Activations
por: Bukhari, Maryam, et al.
Publicado: (2023) -
Utility of Wavelet Denoising with Geometry Factor Weighting for Gadoxetic Acid-enhanced Hepatobiliary-phase MR Imaging
por: Kondo, Shota, et al.
Publicado: (2022) -
MR Imaging of Endolymphatic Hydrops: Utility of iHYDROPS-Mi2 Combined with Deep Learning Reconstruction Denoising
por: Naganawa, Shinji, et al.
Publicado: (2020) -
Denoising of 3D Brain MR Images with Parallel Residual Learning of Convolutional Neural Network Using Global and Local Feature Extraction
por: Wu, Liang, et al.
Publicado: (2021)