Cargando…
Investigating the Image Quality and Utility of Synthetic MRI in the Breast
PURPOSE: Synthetic MRI reconstructs multiple sequences in a single acquisition. In the present study, we aimed to compare the image quality and utility of synthetic MRI with that of conventional MRI in the breast. METHODS: We retrospectively collected the imaging data of 37 women (mean age: 55.1 yea...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922358/ https://www.ncbi.nlm.nih.gov/pubmed/33536401 http://dx.doi.org/10.2463/mrms.mp.2020-0132 |
Sumario: | PURPOSE: Synthetic MRI reconstructs multiple sequences in a single acquisition. In the present study, we aimed to compare the image quality and utility of synthetic MRI with that of conventional MRI in the breast. METHODS: We retrospectively collected the imaging data of 37 women (mean age: 55.1 years; range: 20–78 years) who had undergone both synthetic and conventional MRI of T2-weighted, T1-weighted, and fat-suppressed (FS)-T2-weighted images. Two independent breast radiologists evaluated the overall image quality, anatomical sharpness, contrast between tissues, image homogeneity, and presence of artifacts of synthetic and conventional MRI on a 5-point scale (5 = very good to 1 = very poor). The interobserver agreement between the radiologists was evaluated using weighted kappa. RESULTS: For synthetic MRI, the acquisition time was 3 min 28 s. On the 5-point scale evaluation of overall image quality, although the scores of synthetic FS-T2-weighted images (4.01 ± 0.56) were lower than that of conventional images (4.95 ± 0.23; P < 0.001), the scores of synthetic T1- and T2-weighted images (4.95 ± 0.23 and 4.97 ± 0.16) were comparable with those of conventional images (4.92 ± 0.27 and 4.97 ± 0.16; P = 0.484 and 1.000, respectively). The kappa coefficient of conventional MRI was fair (0.53; P < 0.001), and that of conventional MRI was fair (0.46; P < 0.001). CONCLUSION: The image quality of synthetic T1- and T2-weighted images was similar to that of conventional images and diagnostically acceptable, whereas the quality of synthetic T2-weighted FS images was inferior to conventional images. Although synthetic MRI images of the breast have the potential to provide efficient image diagnosis, further validation and improvement are required for clinical application. |
---|