Cargando…
Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning
BACKGROUND: High-throughput plant phenotyping (HTPP) methods have the potential to speed up the crop breeding process through the development of cost-effective, rapid and scalable phenotyping methods amenable to automation. Crop disease resistance breeding stands to benefit from successful implement...
Autores principales: | Koc, Alexander, Odilbekov, Firuz, Alamrani, Marwan, Henriksson, Tina, Chawade, Aakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922805/ https://www.ncbi.nlm.nih.gov/pubmed/35292072 http://dx.doi.org/10.1186/s13007-022-00868-0 |
Ejemplares similares
-
Proximal Phenotyping and Machine Learning Methods to Identify Septoria Tritici Blotch Disease Symptoms in Wheat
por: Odilbekov, Firuz, et al.
Publicado: (2018) -
Characterizing Winter Wheat Germplasm for Fusarium Head Blight Resistance Under Accelerated Growth Conditions
por: Zakieh, Mustafa, et al.
Publicado: (2021) -
GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria Tritici Blotch in Nordic Winter Wheat at Seedling Stage
por: Odilbekov, Firuz, et al.
Publicado: (2019) -
Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging
por: Leiva, Fernanda, et al.
Publicado: (2022) -
Affordable Imaging Lab for Noninvasive Analysis of Biomass and Early Vigour in Cereal Crops
por: Armoniené, Rita, et al.
Publicado: (2018)