Cargando…
External validation study on the value of deep learning algorithm for the prediction of hematoma expansion from noncontrast CT scans
BACKGROUND: Hematoma expansion is an independent predictor of patient outcome and mortality. The early diagnosis of hematoma expansion is crucial for selecting clinical treatment options. This study aims to explore the value of a deep learning algorithm for the prediction of hematoma expansion from...
Autores principales: | Guo, Dong Chuang, Gu, Jun, He, Jian, Chu, Hai Rui, Dong, Na, Zheng, Yi Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8922885/ https://www.ncbi.nlm.nih.gov/pubmed/35287616 http://dx.doi.org/10.1186/s12880-022-00772-y |
Ejemplares similares
-
Noncontrast Computed Tomography Markers as Predictors of Revised Hematoma Expansion in Acute Intracerebral Hemorrhage
por: Yang, Wen‐Song, et al.
Publicado: (2021) -
Heterogeneity Signs on Noncontrast Computed Tomography Predict Hematoma Expansion after Intracerebral Hemorrhage: A Meta-Analysis
por: Zhang, Danfeng, et al.
Publicado: (2018) -
Diagnostic Accuracy and Reliability of Noncontrast Computed Tomography Markers for Acute Hematoma Expansion among Radiologists
por: Almubarak, Hawra, et al.
Publicado: (2022) -
Noncontrast Computed Tomography Markers Associated with Hematoma Expansion: Analysis of a Multicenter Retrospective Study
por: Yu, Lianghong, et al.
Publicado: (2023) -
Noncontrast Computed Tomography-Based Radiomics Analysis in Discriminating Early Hematoma Expansion after Spontaneous Intracerebral Hemorrhage
por: Song, Zuhua, et al.
Publicado: (2021)