Cargando…
scREMOTE: Using multimodal single cell data to predict regulatory gene relationships and to build a computational cell reprogramming model
Cell reprogramming offers a potential treatment to many diseases, by regenerating specialized somatic cells. Despite decades of research, discovering the transcription factors that promote cell reprogramming has largely been accomplished through trial and error, a time-consuming and costly method. A...
Autores principales: | Tran, Andy, Yang, Pengyi, Yang, Jean Y H, Ormerod, John T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923006/ https://www.ncbi.nlm.nih.gov/pubmed/35300460 http://dx.doi.org/10.1093/nargab/lqac023 |
Ejemplares similares
-
Computational approaches for direct cell reprogramming: from the bulk omics era to the single cell era
por: Tran, Andy, et al.
Publicado: (2022) -
scClassify: sample size estimation and multiscale classification of cells using single and multiple reference
por: Lin, Yingxin, et al.
Publicado: (2020) -
Multi-task learning from multimodal single-cell omics with Matilda
por: Liu, Chunlei, et al.
Publicado: (2023) -
scDART: integrating unmatched scRNA-seq and scATAC-seq data and learning cross-modality relationship simultaneously
por: Zhang, Ziqi, et al.
Publicado: (2022) -
scDC: single cell differential composition analysis
por: Cao, Yue, et al.
Publicado: (2019)