Cargando…

Heavy traffic limits for queues with non-stationary path-dependent arrival processes

In this paper, we develop a diffusion approximation for the transient distribution of the workload process in a standard single-server queue with a non-stationary Polya arrival process, which is a path-dependent Markov point process. The path-dependent arrival process model is useful because it has...

Descripción completa

Detalles Bibliográficos
Autores principales: Fendick, Kerry, Whitt, Ward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923602/
https://www.ncbi.nlm.nih.gov/pubmed/35310891
http://dx.doi.org/10.1007/s11134-021-09728-5
Descripción
Sumario:In this paper, we develop a diffusion approximation for the transient distribution of the workload process in a standard single-server queue with a non-stationary Polya arrival process, which is a path-dependent Markov point process. The path-dependent arrival process model is useful because it has the arrival rate depending on the history of the arrival process, thus capturing a self-reinforcing property that one might expect in some applications. The workload approximation is based on heavy-traffic limits for (i) a sequence of Polya processes, in which the limit is a Gaussian–Markov process, and (ii) a sequence of P/GI/1 queues in which the arrival rate function approaches a constant service rate uniformly over compact intervals.