Cargando…

CLAIRE: Constrained Large Deformation Diffeomorphic Image Registration on Parallel Computing Architectures

CLAIRE (Mang & Biros, 2019) is a computational framework for Constrained LArge deformation diffeomorphic Image REgistration (Mang et al., 2019). It supports highly-optimized, parallel computational kernels for (multi-node) CPU (Gholami et al., 2017; Mang et al., 2019; Mang & Biros, 2016) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Brunn, Malte, Himthani, Naveen, Biros, George, Mehl, Miriam, Mang, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923611/
https://www.ncbi.nlm.nih.gov/pubmed/35295546
http://dx.doi.org/10.21105/joss.03038
Descripción
Sumario:CLAIRE (Mang & Biros, 2019) is a computational framework for Constrained LArge deformation diffeomorphic Image REgistration (Mang et al., 2019). It supports highly-optimized, parallel computational kernels for (multi-node) CPU (Gholami et al., 2017; Mang et al., 2019; Mang & Biros, 2016) and (multi-node multi-)GPU architectures (Brunn et al., 2020, 2021). CLAIRE uses MPI for distributed-memory parallelism and can be scaled up to thousands of cores (Mang et al., 2019; Mang & Biros, 2016) and GPU devices (Brunn et al., 2020). The multi-GPU implementation uses device direct communication. The computational kernels are interpolation for semi-Lagrangian time integration, and a mixture of high-order finite difference operators and Fast-Fourier-Transforms (FFTs) for differentiation. CLAIRE uses a Newton–Krylov solver for numerical optimization (Mang & Biros, 2015, 2017). It features various schemes for regularization of the control problem (Mang & Biros, 2016) and different similarity measures. CLAIRE implements different preconditioners for the reduced space Hessian (Brunn et al., 2020; Mang et al., 2019) to optimize computational throughput and enable fast convergence. It uses PETSc (Balay et al., n.d.) for scalable and efficient linear algebra operations and solvers and TAO (Balay et al., n.d.; Munson et al., 2015) for numerical optimization. CLAIRE can be downloaded at https://github.com/andreasmang/claire.