Cargando…

DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions

Hypoxia promotes drug resistance and induces the expression of hypoxia inducible factor (HIF)-1α in liver cancer cells. However, to date, no selective HIF-1α inhibitor has been clinically approved. The aim of this study is to investigate a drug-targetable molecule that can regulate HIF-1α under hypo...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Chong, Wu, Lin-Wen, Li, Zhi-Di, Zhang, Man-Man, Wu, Jie, Du, Fei-Hua, Zeng, Ling-Hui, Li, Yang-Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923653/
https://www.ncbi.nlm.nih.gov/pubmed/35244188
http://dx.doi.org/10.3892/ijo.2022.5335
_version_ 1784669703109607424
author Zhang, Chong
Wu, Lin-Wen
Li, Zhi-Di
Zhang, Man-Man
Wu, Jie
Du, Fei-Hua
Zeng, Ling-Hui
Li, Yang-Ling
author_facet Zhang, Chong
Wu, Lin-Wen
Li, Zhi-Di
Zhang, Man-Man
Wu, Jie
Du, Fei-Hua
Zeng, Ling-Hui
Li, Yang-Ling
author_sort Zhang, Chong
collection PubMed
description Hypoxia promotes drug resistance and induces the expression of hypoxia inducible factor (HIF)-1α in liver cancer cells. However, to date, no selective HIF-1α inhibitor has been clinically approved. The aim of this study is to investigate a drug-targetable molecule that can regulate HIF-1α under hypoxia. The present study demonstrated that hyperactivation of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)/HIF-1α signaling was associated with an increased risk of liver cancer. In addition, DYRK1A knockdown using small interfering RNA transfection or treatment with harmine, a natural alkaloid, significantly reduced the protein expression levels of HIF-1α in liver cancer cells under hypoxic conditions in vitro. Conversely, DYRK1A overexpression-vector transfection in liver cancer cell lines notably induced HIF-1α expression under the same conditions. Furthermore, DYRK1A was shown to interact and activate STAT3 under hypoxia to regulate HIF-1α expression. These findings indicated that DYRK1A may be a potential upstream activator of HIF-1α and positively regulate HIF-1α via the STAT3 signaling pathway in liver cancer cells. Additionally, treatment with harmine attenuated the proliferative ability of liver cancer cells under hypoxic conditions using sulforhodamine B and colony formation assay. Furthermore, DYRK1A knockdown could significantly enhance the anti-liver cancer effects of regorafenib and sorafenib under hypoxia. Co-treatment with harmine and either regorafenib or sorafenib also promoted cell death via the STAT3/HIF-1α/AKT signaling pathway under hypoxia using PI staining and western blotting. Overall, the results from the present study suggested that DYRK1A/HIF-1α signaling may be considered a novel pathway involved in chemoresistance, thus providing a potentially effective therapeutic regimen for treating liver cancer.
format Online
Article
Text
id pubmed-8923653
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-89236532022-03-17 DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions Zhang, Chong Wu, Lin-Wen Li, Zhi-Di Zhang, Man-Man Wu, Jie Du, Fei-Hua Zeng, Ling-Hui Li, Yang-Ling Int J Oncol Articles Hypoxia promotes drug resistance and induces the expression of hypoxia inducible factor (HIF)-1α in liver cancer cells. However, to date, no selective HIF-1α inhibitor has been clinically approved. The aim of this study is to investigate a drug-targetable molecule that can regulate HIF-1α under hypoxia. The present study demonstrated that hyperactivation of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)/HIF-1α signaling was associated with an increased risk of liver cancer. In addition, DYRK1A knockdown using small interfering RNA transfection or treatment with harmine, a natural alkaloid, significantly reduced the protein expression levels of HIF-1α in liver cancer cells under hypoxic conditions in vitro. Conversely, DYRK1A overexpression-vector transfection in liver cancer cell lines notably induced HIF-1α expression under the same conditions. Furthermore, DYRK1A was shown to interact and activate STAT3 under hypoxia to regulate HIF-1α expression. These findings indicated that DYRK1A may be a potential upstream activator of HIF-1α and positively regulate HIF-1α via the STAT3 signaling pathway in liver cancer cells. Additionally, treatment with harmine attenuated the proliferative ability of liver cancer cells under hypoxic conditions using sulforhodamine B and colony formation assay. Furthermore, DYRK1A knockdown could significantly enhance the anti-liver cancer effects of regorafenib and sorafenib under hypoxia. Co-treatment with harmine and either regorafenib or sorafenib also promoted cell death via the STAT3/HIF-1α/AKT signaling pathway under hypoxia using PI staining and western blotting. Overall, the results from the present study suggested that DYRK1A/HIF-1α signaling may be considered a novel pathway involved in chemoresistance, thus providing a potentially effective therapeutic regimen for treating liver cancer. D.A. Spandidos 2022-03-03 /pmc/articles/PMC8923653/ /pubmed/35244188 http://dx.doi.org/10.3892/ijo.2022.5335 Text en Copyright: © Zhang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhang, Chong
Wu, Lin-Wen
Li, Zhi-Di
Zhang, Man-Man
Wu, Jie
Du, Fei-Hua
Zeng, Ling-Hui
Li, Yang-Ling
DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title_full DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title_fullStr DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title_full_unstemmed DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title_short DYRK1A suppression attenuates HIF-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
title_sort dyrk1a suppression attenuates hif-1α accumulation and enhances the anti-liver cancer effects of regorafenib and sorafenib under hypoxic conditions
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923653/
https://www.ncbi.nlm.nih.gov/pubmed/35244188
http://dx.doi.org/10.3892/ijo.2022.5335
work_keys_str_mv AT zhangchong dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT wulinwen dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT lizhidi dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT zhangmanman dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT wujie dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT dufeihua dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT zenglinghui dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions
AT liyangling dyrk1asuppressionattenuateshif1aaccumulationandenhancestheantilivercancereffectsofregorafenibandsorafenibunderhypoxicconditions