Cargando…
Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
Autores principales: | Meid, Andreas D., Gerharz, Alexander, Groll, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923723/ https://www.ncbi.nlm.nih.gov/pubmed/35104394 http://dx.doi.org/10.1002/psp4.12761 |
Ejemplares similares
-
Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
por: Chan, Phyllis, et al.
Publicado: (2022) -
Can Machine Learning from Real-World Data Support Drug Treatment
Decisions? A Prediction Modeling Case for Direct Oral
Anticoagulants
por: Meid, Andreas D., et al.
Publicado: (2021) -
An implementation framework to improve the transparency and reproducibility of computational models of infectious diseases
por: Pokutnaya, Darya, et al.
Publicado: (2023) -
Disease-dependent variations in the timing and causes of readmissions in Germany: A claims data analysis for six different conditions
por: Ruff, Carmen, et al.
Publicado: (2021) -
Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics
por: Cwiek, Andrew, et al.
Publicado: (2022)