Cargando…

Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”

Detalles Bibliográficos
Autores principales: Chan, Phyllis, Lu, James, Bruno, René, Jin, Jin Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923728/
https://www.ncbi.nlm.nih.gov/pubmed/35102724
http://dx.doi.org/10.1002/psp4.12760
_version_ 1784669720459345920
author Chan, Phyllis
Lu, James
Bruno, René
Jin, Jin Y.
author_facet Chan, Phyllis
Lu, James
Bruno, René
Jin, Jin Y.
author_sort Chan, Phyllis
collection PubMed
description
format Online
Article
Text
id pubmed-8923728
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89237282022-03-21 Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition” Chan, Phyllis Lu, James Bruno, René Jin, Jin Y. CPT Pharmacometrics Syst Pharmacol Perspectives John Wiley and Sons Inc. 2022-01-31 2022-03 /pmc/articles/PMC8923728/ /pubmed/35102724 http://dx.doi.org/10.1002/psp4.12760 Text en © 2022 Genentech and Roche. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Perspectives
Chan, Phyllis
Lu, James
Bruno, René
Jin, Jin Y.
Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title_full Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title_fullStr Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title_full_unstemmed Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title_short Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
title_sort update to improve reproducibility and interpretability: a response to “machine learning for tumor growth inhibition”
topic Perspectives
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923728/
https://www.ncbi.nlm.nih.gov/pubmed/35102724
http://dx.doi.org/10.1002/psp4.12760
work_keys_str_mv AT chanphyllis updatetoimprovereproducibilityandinterpretabilityaresponsetomachinelearningfortumorgrowthinhibition
AT lujames updatetoimprovereproducibilityandinterpretabilityaresponsetomachinelearningfortumorgrowthinhibition
AT brunorene updatetoimprovereproducibilityandinterpretabilityaresponsetomachinelearningfortumorgrowthinhibition
AT jinjiny updatetoimprovereproducibilityandinterpretabilityaresponsetomachinelearningfortumorgrowthinhibition