Cargando…
Update to improve reproducibility and interpretability: A response to “Machine Learning for Tumor Growth Inhibition”
Autores principales: | Chan, Phyllis, Lu, James, Bruno, René, Jin, Jin Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923728/ https://www.ncbi.nlm.nih.gov/pubmed/35102724 http://dx.doi.org/10.1002/psp4.12760 |
Ejemplares similares
-
Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
por: Meid, Andreas D., et al.
Publicado: (2022) -
Application of Machine Learning for Tumor Growth Inhibition – Overall Survival Modeling Platform
por: Chan, Phyllis, et al.
Publicado: (2020) -
Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics
por: Cwiek, Andrew, et al.
Publicado: (2022) -
Support academic access to automated cloud labs to improve reproducibility
por: Armer, Chase, et al.
Publicado: (2023) -
ModelBricks—modules for reproducible modeling improving model annotation and provenance
por: Cowan, Ann E., et al.
Publicado: (2019)