Cargando…
Deep autoencoder based domain adaptation for transfer learning
The concept of transfer learning has received a great deal of concern and interest throughout the last decade. Selecting an ideal representational framework for instances of various domains to minimize the divergence among source and target domains is a fundamental research challenge in representati...
Autores principales: | Dev, Krishna, Ashraf, Zubair, Muhuri, Pranab K., Kumar, Sandeep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923974/ https://www.ncbi.nlm.nih.gov/pubmed/35310888 http://dx.doi.org/10.1007/s11042-022-12226-2 |
Ejemplares similares
-
Detection of novel coronavirus from chest X-rays using deep convolutional neural networks
por: Sanket, Shashwat, et al.
Publicado: (2021) -
A survey on providing customer and public administration based services using AI: chatbot
por: Nirala, Krishna Kumar, et al.
Publicado: (2022) -
Location-aware hazardous litter management for smart emergency governance in urban eco-cyber-physical systems
por: Peyvandi, Amirhossein, et al.
Publicado: (2022) -
A cooperative deep learning model for stock market prediction using deep autoencoder and sentiment analysis
por: Rekha, KS, et al.
Publicado: (2022) -
HOW DOES SOCIAL DEPRIVATION INFLUENCE END-OF-LIFE FRAILTY TRAJECTORIES? EVIDENCE FROM ELECTRONIC HEALTH RECORDS
por: Stow, Daniel, et al.
Publicado: (2019)