Cargando…
Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties
Sensory neurons are responsible for the generation and transmission of nociceptive signals from the periphery to the central nervous system. They encompass a broadly heterogeneous population of highly specialized neurons. The understanding of the molecular choreography of individual subpopulations i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924089/ https://www.ncbi.nlm.nih.gov/pubmed/35031856 http://dx.doi.org/10.1007/s00424-021-02656-6 |
_version_ | 1784669771495636992 |
---|---|
author | Körner, Jannis Lampert, Angelika |
author_facet | Körner, Jannis Lampert, Angelika |
author_sort | Körner, Jannis |
collection | PubMed |
description | Sensory neurons are responsible for the generation and transmission of nociceptive signals from the periphery to the central nervous system. They encompass a broadly heterogeneous population of highly specialized neurons. The understanding of the molecular choreography of individual subpopulations is essential to understand physiological and pathological pain states. Recently, it became evident that species differences limit transferability of research findings between human and rodents in pain research. Thus, it is necessary to systematically compare and categorize the electrophysiological data gained from human and rodent dorsal root ganglia neurons (DRGs). In this systematic review, we condense the available electrophysiological data defining subidentities in human and rat DRGs. A systematic search on PUBMED yielded 30 studies on rat and 3 studies on human sensory neurons. Defined outcome parameters included current clamp, voltage clamp, cell morphology, pharmacological readouts, and immune reactivity parameters. We compare evidence gathered for outcome markers to define subgroups, offer electrophysiological parameters for the definition of neuronal subtypes, and give a framework for the transferability of electrophysiological findings between species. A semiquantitative analysis revealed that for rat DRGs, there is an overarching consensus between studies that C-fiber linked sensory neurons display a lower action potential threshold, higher input resistance, a larger action potential overshoot, and a longer afterhyperpolarization duration compared to other sensory neurons. They are also more likely to display an infliction point in the falling phase of the action potential. This systematic review points out the need of more electrophysiological studies on human sensory neurons. |
format | Online Article Text |
id | pubmed-8924089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-89240892022-03-17 Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties Körner, Jannis Lampert, Angelika Pflugers Arch Invited Review Sensory neurons are responsible for the generation and transmission of nociceptive signals from the periphery to the central nervous system. They encompass a broadly heterogeneous population of highly specialized neurons. The understanding of the molecular choreography of individual subpopulations is essential to understand physiological and pathological pain states. Recently, it became evident that species differences limit transferability of research findings between human and rodents in pain research. Thus, it is necessary to systematically compare and categorize the electrophysiological data gained from human and rodent dorsal root ganglia neurons (DRGs). In this systematic review, we condense the available electrophysiological data defining subidentities in human and rat DRGs. A systematic search on PUBMED yielded 30 studies on rat and 3 studies on human sensory neurons. Defined outcome parameters included current clamp, voltage clamp, cell morphology, pharmacological readouts, and immune reactivity parameters. We compare evidence gathered for outcome markers to define subgroups, offer electrophysiological parameters for the definition of neuronal subtypes, and give a framework for the transferability of electrophysiological findings between species. A semiquantitative analysis revealed that for rat DRGs, there is an overarching consensus between studies that C-fiber linked sensory neurons display a lower action potential threshold, higher input resistance, a larger action potential overshoot, and a longer afterhyperpolarization duration compared to other sensory neurons. They are also more likely to display an infliction point in the falling phase of the action potential. This systematic review points out the need of more electrophysiological studies on human sensory neurons. Springer Berlin Heidelberg 2022-01-15 2022 /pmc/articles/PMC8924089/ /pubmed/35031856 http://dx.doi.org/10.1007/s00424-021-02656-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Invited Review Körner, Jannis Lampert, Angelika Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title | Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title_full | Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title_fullStr | Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title_full_unstemmed | Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title_short | Functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
title_sort | functional subgroups of rat and human sensory neurons: a systematic review of electrophysiological properties |
topic | Invited Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924089/ https://www.ncbi.nlm.nih.gov/pubmed/35031856 http://dx.doi.org/10.1007/s00424-021-02656-6 |
work_keys_str_mv | AT kornerjannis functionalsubgroupsofratandhumansensoryneuronsasystematicreviewofelectrophysiologicalproperties AT lampertangelika functionalsubgroupsofratandhumansensoryneuronsasystematicreviewofelectrophysiologicalproperties |