Cargando…
A numerically stable algorithm for integrating Bayesian models using Markov melding
When statistical analyses consider multiple data sources, Markov melding provides a method for combining the source-specific Bayesian models. Markov melding joins together submodels that have a common quantity. One challenge is that the prior for this quantity can be implicit, and its prior density...
Autores principales: | Manderson, Andrew A., Goudie, Robert J. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924096/ https://www.ncbi.nlm.nih.gov/pubmed/35310545 http://dx.doi.org/10.1007/s11222-022-10086-2 |
Ejemplares similares
-
Combining chains of Bayesian models with Markov melding
por: Manderson, Andrew A., et al.
Publicado: (2022) -
Stochastic approximation cut algorithm for inference in modularized Bayesian models
por: Liu, Yang, et al.
Publicado: (2021) -
Bayesian melding for estimating uncertainty in national HIV prevalence estimates
por: Alkema, L, et al.
Publicado: (2008) -
Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
por: Touloupou, Panayiota, et al.
Publicado: (2019) -
Inclusion of Sarcopenia Within MELD (MELD-Sarcopenia) and the Prediction of Mortality in Patients With Cirrhosis
por: Montano-Loza, Aldo J, et al.
Publicado: (2015)