Cargando…
Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm
Seizure prediction might be the solution to tackle the apparent unpredictability of seizures in patients with drug-resistant epilepsy, which comprise about a third of all patients with epilepsy. Designing seizure prediction models involves defining the pre-ictal period, a transition stage between in...
Autores principales: | Pinto, Mauro, Coelho, Tiago, Leal, Adriana, Lopes, Fábio, Dourado, António, Martins, Pedro, Teixeira, César |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924190/ https://www.ncbi.nlm.nih.gov/pubmed/35292691 http://dx.doi.org/10.1038/s41598-022-08322-w |
Ejemplares similares
-
A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction
por: Pinto, Mauro. F., et al.
Publicado: (2021) -
On the clinical acceptance of black‐box systems for EEG seizure prediction
por: Pinto, Mauro. F., et al.
Publicado: (2022) -
The goal of explaining black boxes in EEG seizure prediction is not to explain models' decisions
por: Pinto, Mauro F., et al.
Publicado: (2023) -
EPIC: Annotated epileptic EEG independent components for artifact reduction
por: Lopes, Fábio, et al.
Publicado: (2022) -
A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms
por: Díaz-Manríquez, Alan, et al.
Publicado: (2016)