Cargando…

Risk subtyping and prognostic assessment of prostate cancer based on consensus genes

Prostate cancer (PCa) is the most frequent malignancy in male urogenital system around worldwide. We performed molecular subtyping and prognostic assessment based on consensus genes in patients with PCa. Five cohorts containing 1,046 PCa patients with RNA expression profiles and recorded clinical fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Jialin, Guan, Yu, Wang, Bijun, Chen, Lei, Chen, Junyi, Zhang, Meng, Liang, Chaozhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924191/
https://www.ncbi.nlm.nih.gov/pubmed/35293897
http://dx.doi.org/10.1038/s42003-022-03164-8
Descripción
Sumario:Prostate cancer (PCa) is the most frequent malignancy in male urogenital system around worldwide. We performed molecular subtyping and prognostic assessment based on consensus genes in patients with PCa. Five cohorts containing 1,046 PCa patients with RNA expression profiles and recorded clinical follow-up information were included. Univariate, multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression were used to select prognostic genes and establish the signature. Immunohistochemistry staining, cell proliferation, migration and invasion assays were used to assess the biological functions of key genes. Thirty-nine intersecting consensus prognostic genes from five independent cohorts were identified. Subsequently, an eleven-consensus-gene classifier was established. In addition, multivariate Cox regression analyses showed that the classifier served as an independent indicator of recurrence-free survival in three of the five cohorts. Combined receiver operating characteristic (ROC) analysis achieved synthesized effects by combining the classifier with clinicopathological features in four of five cohorts. SRD5A2 inhibits cell proliferation, while ITGA11 promotes cell migration and invasion, possibly through the PI3K/AKT signaling pathway. To conclude, we established and validated an eleven-consensus-gene classifier, which may add prognostic value to the currently available staging system.