Cargando…
Cell segmentation for immunofluorescence multiplexed images using two-stage domain adaptation and weakly labeled data for pre-training
Cellular profiling with multiplexed immunofluorescence (MxIF) images can contribute to a more accurate patient stratification for immunotherapy. Accurate cell segmentation of the MxIF images is an essential step. We propose a deep learning pipeline to train a Mask R-CNN model (deep network) for cell...
Autores principales: | Han, Wenchao, Cheung, Alison M., Yaffe, Martin J., Martel, Anne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924193/ https://www.ncbi.nlm.nih.gov/pubmed/35292693 http://dx.doi.org/10.1038/s41598-022-08355-1 |
Ejemplares similares
-
Quantitative single-cell analysis of immunofluorescence protein multiplex images illustrates biomarker spatial heterogeneity within breast cancer subtypes
por: Cheung, Alison Min-Yan, et al.
Publicado: (2021) -
Weakly supervised deep learning to predict recurrence in low-grade endometrial cancer from multiplexed immunofluorescence images
por: Jiménez-Sánchez, Daniel, et al.
Publicado: (2023) -
Multiplex immunofluorescence to measure dynamic changes in tumor-infiltrating lymphocytes and PD-L1 in early-stage breast cancer
por: Sanchez, Katherine, et al.
Publicado: (2021) -
Towards multiplexed immunofluorescence of 3D tissues
por: Cho, Wonjin, et al.
Publicado: (2023) -
Validation of an Accurate Automated Multiplex Immunofluorescence Method for Immuno-Profiling Melanoma
por: Yaseen, Zarwa, et al.
Publicado: (2022)