Cargando…
DIAMetAlyzer allows automated false-discovery rate-controlled analysis for data-independent acquisition in metabolomics
The extraction of meaningful biological knowledge from high-throughput mass spectrometry data relies on limiting false discoveries to a manageable amount. For targeted approaches in metabolomics a main challenge is the detection of false positive metabolic features in the low signal-to-noise ranges...
Autores principales: | Alka, Oliver, Shanthamoorthy, Premy, Witting, Michael, Kleigrewe, Karin, Kohlbacher, Oliver, Röst, Hannes L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924252/ https://www.ncbi.nlm.nih.gov/pubmed/35292629 http://dx.doi.org/10.1038/s41467-022-29006-z |
Ejemplares similares
-
Combining Structure and Sequence Information Allows Automated Prediction of Substrate Specificities within Enzyme Families
por: Röttig, Marc, et al.
Publicado: (2010) -
UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis
por: Kontou, Eftychia E., et al.
Publicado: (2023) -
Untargeted Metabolomics Reveals Molecular Effects of Ketogenic Diet on Healthy and Tumor Xenograft Mouse Models
por: Licha, David, et al.
Publicado: (2019) -
Democratizing data-independent acquisition proteomics analysis on public cloud infrastructures via the Galaxy framework
por: Fahrner, Matthias, et al.
Publicado: (2022) -
False certainty in the acquisition of anatomical and physiotherapeutic knowledge
por: von Hoyer, Johannes, et al.
Publicado: (2022)