Cargando…
Developing a Cancer Digital Twin: Supervised Metastases Detection From Consecutive Structured Radiology Reports
The development of digital cancer twins relies on the capture of high-resolution representations of individual cancer patients throughout the course of their treatment. Our research aims to improve the detection of metastatic disease over time from structured radiology reports by exposing prediction...
Autores principales: | Batch, Karen E., Yue, Jianwei, Darcovich, Alex, Lupton, Kaelan, Liu, Corinne C., Woodlock, David P., El Amine, Mohammad Ali K., Causa-Andrieu, Pamela I., Gazit, Lior, Nguyen, Gary H., Zulkernine, Farhana, Do, Richard K. G., Simpson, Amber L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924403/ https://www.ncbi.nlm.nih.gov/pubmed/35310959 http://dx.doi.org/10.3389/frai.2022.826402 |
Ejemplares similares
-
Building One-Shot Semi-Supervised (BOSS) Learning Up to Fully Supervised Performance
por: Smith, Leslie N., et al.
Publicado: (2022) -
Self-supervised recurrent depth estimation with attention mechanisms
por: Makarov, Ilya, et al.
Publicado: (2022) -
Supervised machine learning models for depression sentiment analysis
por: Obagbuwa, Ibidun Christiana, et al.
Publicado: (2023) -
Vector representation based on a supervised codebook for Nepali documents classification
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
Automatic emotion recognition in healthcare data using supervised machine learning
por: Azam, Nazish, et al.
Publicado: (2021)