Cargando…
Statistical Perspective on Functional and Causal Neural Connectomics: A Comparative Study
Representation of brain network interactions is fundamental to the translation of neural structure to brain function. As such, methodologies for mapping neural interactions into structural models, i.e., inference of functional connectome from neural recordings, are key for the study of brain network...
Autores principales: | Biswas, Rahul, Shlizerman, Eli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924489/ https://www.ncbi.nlm.nih.gov/pubmed/35308566 http://dx.doi.org/10.3389/fnsys.2022.817962 |
Ejemplares similares
-
Statistical perspective on functional and causal neural connectomics: The Time-Aware PC algorithm
por: Biswas, Rahul, et al.
Publicado: (2022) -
Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics
por: Kunert-Graf, James M., et al.
Publicado: (2017) -
Neural Interactome: Interactive Simulation of a Neuronal System
por: Kim, Jimin, et al.
Publicado: (2019) -
Investigating dynamical properties of the Caenorhabditis elegans connectome through full-network simulations
por: Kunert, James, et al.
Publicado: (2013) -
Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe
por: Shlizerman, Eli, et al.
Publicado: (2014)