Cargando…
Identifying informative tweets during a pandemic via a topic-aware neural language model
Every epidemic affects the real lives of many people around the world and leads to terrible consequences. Recently, many tweets about the COVID-19 pandemic have been shared publicly on social media platforms. The analysis of these tweets is helpful for emergency response organizations to prioritize...
Autores principales: | Gao, Wang, Li, Lin, Tao, Xiaohui, Zhou, Jing, Tao, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924578/ https://www.ncbi.nlm.nih.gov/pubmed/35308294 http://dx.doi.org/10.1007/s11280-022-01034-1 |
Ejemplares similares
-
We tweet Arabic; I tweet English: self-concept, language and social media
por: Thomas, Justin, et al.
Publicado: (2019) -
An improved machine learning technique for identify informative COVID-19 tweets
por: Malla, Sreejagadeesh, et al.
Publicado: (2022) -
Topics, Trends, and Sentiments of Tweets About the COVID-19 Pandemic: Temporal Infoveillance Study
por: Chandrasekaran, Ranganathan, et al.
Publicado: (2020) -
Identifying COVID-19 english informative tweets using limited labelled data
por: Kothuru, Srinivasulu, et al.
Publicado: (2023) -
Deep Neural Networks for Simultaneously Capturing Public Topics and Sentiments During a Pandemic: Application on a COVID-19 Tweet Data Set
por: Boukobza, Adrien, et al.
Publicado: (2022)