Cargando…
RDAU-Net: Based on a Residual Convolutional Neural Network With DFP and CBAM for Brain Tumor Segmentation
Due to the high heterogeneity of brain tumors, automatic segmentation of brain tumors remains a challenging task. In this paper, we propose RDAU-Net by adding dilated feature pyramid blocks with 3D CBAM blocks and inserting 3D CBAM blocks after skip-connection layers. Moreover, a CBAM with channel a...
Autores principales: | Wang, Jingjing, Yu, Zishu, Luan, Zhenye, Ren, Jinwen, Zhao, Yanhua, Yu, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924611/ https://www.ncbi.nlm.nih.gov/pubmed/35311076 http://dx.doi.org/10.3389/fonc.2022.805263 |
Ejemplares similares
-
An RDAU-NET model for lesion segmentation in breast ultrasound images
por: Zhuang, Zhemin, et al.
Publicado: (2019) -
TReC: Transferred ResNet and CBAM for Detecting Brain Diseases
por: Xiao, Yuteng, et al.
Publicado: (2021) -
Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation
por: Luan, Shunyao, et al.
Publicado: (2021) -
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
por: Wu, Jin, et al.
Publicado: (2022) -
RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation
por: Yu, Gui, et al.
Publicado: (2022)