Cargando…
A proposed artificial intelligence workflow to address application challenges leveraged on algorithm uncertainty
Artificial Intelligence (AI) has achieved state-of-the-art performance in medical imaging. However, most algorithms focused exclusively on improving the accuracy of classification while neglecting the major challenges in a real-world application. The opacity of algorithms prevents users from knowing...
Autores principales: | Li, Dantong, Hu, Lianting, Peng, Xiaoting, Xiao, Ning, Zhao, Hong, Liu, Guangjian, Liu, Hongsheng, Li, Kuanrong, Ai, Bin, Xia, Huimin, Lu, Long, Gao, Yunfei, Wu, Jian, Liang, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924636/ https://www.ncbi.nlm.nih.gov/pubmed/35310335 http://dx.doi.org/10.1016/j.isci.2022.103961 |
Ejemplares similares
-
Leveraging Uncertainty from Deep Learning for Trustworthy
Material Discovery Workflows
por: Zhang, Jize, et al.
Publicado: (2021) -
Risk, uncertainty, and leverage()
por: Istiak, Khandokar, et al.
Publicado: (2020) -
Uncertainty in Artificial Intelligence
por: D'Ambrosio, Bruce, et al.
Publicado: (2014) -
Uncertainty in Artificial Intelligence
por: MKP
Publicado: (2014) -
Workshop on Uncertainty in Artificial Intelligence
por: Lemmer, John F, et al.
Publicado: (1988)