Cargando…
CHS-Net: A Deep Learning Approach for Hierarchical Segmentation of COVID-19 via CT Images
The pandemic of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also known as COVID-19 has been spreading worldwide, causing rampant loss of lives. Medical imaging such as computed tomography (CT), X-ray, etc., plays a significant role in diagnosing the patients by presenting the...
Autores principales: | Punn, Narinder Singh, Agarwal, Sonali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924740/ https://www.ncbi.nlm.nih.gov/pubmed/35310011 http://dx.doi.org/10.1007/s11063-022-10785-x |
Ejemplares similares
-
Modality specific U-Net variants for biomedical image segmentation: a survey
por: Punn, Narinder Singh, et al.
Publicado: (2022) -
Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray images using fine-tuned deep neural networks
por: Punn, Narinder Singh, et al.
Publicado: (2020) -
ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation
por: Jalali, Yeganeh, et al.
Publicado: (2021) -
COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet
por: Saood, Adnan, et al.
Publicado: (2021) -
Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach
por: Cheng, Wenjun, et al.
Publicado: (2016)