Cargando…
Detecting and Measuring Depression on Social Media Using a Machine Learning Approach: Systematic Review
BACKGROUND: Detection of depression gained prominence soon after this troublesome disease emerged as a serious public health concern worldwide. OBJECTIVE: This systematic review aims to summarize the findings of previous studies concerning applying machine learning (ML) methods to text data from soc...
Autores principales: | Liu, Danxia, Feng, Xing Lin, Ahmed, Farooq, Shahid, Muhammad, Guo, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924784/ https://www.ncbi.nlm.nih.gov/pubmed/35230252 http://dx.doi.org/10.2196/27244 |
Ejemplares similares
-
Machine learning models to detect anxiety and depression through social media: A scoping review
por: Ahmed, Arfan, et al.
Publicado: (2022) -
Schizophrenia Detection Using Machine Learning Approach from Social Media Content
por: Bae, Yi Ji, et al.
Publicado: (2021) -
Detecting ADRD Caregivers’ Information Wants in Social Media: A Machine Learning–Aided Approach
por: Xie, Bo, et al.
Publicado: (2020) -
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models
por: Aldhyani, Theyazn H. H., et al.
Publicado: (2022) -
The Combined Impact of Gender and Age on Post-traumatic Stress Symptoms, Depression, and Insomnia During COVID-19 Outbreak in China
por: Liu, Chengbin, et al.
Publicado: (2021)