Cargando…
A Novel Physical Fatigue Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards Personalized Feedback with Wearable Sensors
This paper proposes a novel method for physical fatigue assessment that can be applied in wearable systems, by utilizing a set of real-time measurable cardiovascular parameters. Daylength measurements, including a morning test set, physical exercise during the day, and an afternoon test set were con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924887/ https://www.ncbi.nlm.nih.gov/pubmed/35214582 http://dx.doi.org/10.3390/s22041680 |
Sumario: | This paper proposes a novel method for physical fatigue assessment that can be applied in wearable systems, by utilizing a set of real-time measurable cardiovascular parameters. Daylength measurements, including a morning test set, physical exercise during the day, and an afternoon test set were conducted on 16 healthy subjects (8 female and 8 male). To analyze cardiovascular parameters for physical fatigue assessment, electrocardiography, pulse wave and blood pressure were measured during the test sets. The fatigue assessment questionnaire score, reaction time, countermovement jump height and hand grip strength were also measured and used as reference parameters. This study demonstrates that (i) the compiled test battery can selectively assess the rested vs. physically-fatigued states; (ii) the obtained linear support-vector machine, trained using the heart rate variability based parameter (F-score 0.842, accuracy 0.813) and pulse arrival time based parameter (F-score 0.875, accuracy 0.875) shows a promising ability to classify between the physically mildly fatigued and significantly fatigued states. Despite the somewhat limited study group size, the results of the study are unique and provide a significant advancement on the existing physical fatigue assessment methods towards a personalized and continuous real-time fatigue monitoring system with wearable sensors. |
---|