Cargando…
Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies
BACKGROUND: Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory....
Autores principales: | Elhakeem, Ahmed, Hughes, Rachael A., Tilling, Kate, Cousminer, Diana L., Jackowski, Stefan A., Cole, Tim J., Kwong, Alex S. F., Li, Zheyuan, Grant, Struan F. A., Baxter-Jones, Adam D. G., Zemel, Babette S., Lawlor, Deborah A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925070/ https://www.ncbi.nlm.nih.gov/pubmed/35291947 http://dx.doi.org/10.1186/s12874-022-01542-8 |
Ejemplares similares
-
V-Spline: An Adaptive Smoothing Spline for Trajectory Reconstruction
por: Cao, Zhanglong, et al.
Publicado: (2021) -
Using Restricted Cubic Splines to Study the Trajectory of Systolic Blood Pressure in the Prognosis of Acute Myocardial Infarction
por: Zheng, Shuai, et al.
Publicado: (2021) -
Interpolating cubic splines
por: Knott, Gary D
Publicado: (2000) -
Nepal sitar
Publicado: (1986) -
Lyrical sitar
Publicado: (1991)