Cargando…

Study effect of probiotics and prebiotics on treatment of OVA-LPS-induced of allergic asthma inflammation and pneumonia by regulating the TLR4/NF-kB signaling pathway

Asthma is a common respiratory disease, and immune system dysregulation has direct relevance to asthma pathogenesis. Probiotics and prebiotics have immunomodulatory effects and can regulate immune responses and may attenuate allergic reactions. Therefore, in this study, we explored the role of probi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhiwei, Mehrabi Nasab, Entezar, Arora, Poonam, Athari, Seyyed Shamsadin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925173/
https://www.ncbi.nlm.nih.gov/pubmed/35296330
http://dx.doi.org/10.1186/s12967-022-03337-3
Descripción
Sumario:Asthma is a common respiratory disease, and immune system dysregulation has direct relevance to asthma pathogenesis. Probiotics and prebiotics have immunomodulatory effects and can regulate immune responses and may attenuate allergic reactions. Therefore, in this study, we explored the role of probiotics and prebiotics in regulating acute airway inflammation and the TLR4/NF-kB pathway. Allergic asthma model of BALB/c mice was produced and treated with probiotics (LA-5, GG, and BB-12) and prebiotics (FOS and GOS). Then AHR, BALF cells count, EPO activity, IL-4, 5, 13, 17, 25, 33, as well as IFN-γ, total and OVA-specific IgE, IgG1, Cys-LT, LTB4, LTC4, and TSLP levels were measured. Also, the GTP/GOT assay was performed and gene expression of Akt, NLR3, NF-kB, PI3K, MyD88, TLR4, CCL11, CCL24, MUC5a, Eotaxin, IL-38, and IL-8 were determined. Finally, lung histopathological features were evaluated. Treatment with probiotics could control AHR, eosinophil infiltration to the BALF and reduce the levels of immunoglobulins, IL-17, GTP and also decrease mucus secretion, goblet cell hyperplasia, peribronchial and perivascular inflammation and also, EPO activity. It could reduce gene expression of TLR4 and CCL11. On the other hand, IL-38 gene expression was increased by both probiotic and prebiotic treatment. Treatment with probiotics and prebiotics could control levels of IL-4, 5, 13, 25, 33, leukotrienes, the gene expression of AKT, NLR3, NF-κB, MyD88, MUC5a. The prebiotic treatment could control peribronchial inflammation and PI3K gene expression. Both of the treatments had no significant effect on the GOT, TSLP and IL-8, eotaxin and CCL24 gene expression. Probiotics and prebiotics could induce tolerance in allegro-inflammatory reactions and alter immune responses in allergic conditions. Probiotics could also modulate cellular and humoral immune responses and prevent allergic disorders.