Cargando…
Capturing the nature of events and event context using hierarchical event descriptors (HED)
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for furthe...
Autores principales: | Robbins, Kay, Truong, Dung, Appelhoff, Stefan, Delorme, Arnaud, Makeig, Scott |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925904/ https://www.ncbi.nlm.nih.gov/pubmed/34848298 http://dx.doi.org/10.1016/j.neuroimage.2021.118766 |
Ejemplares similares
-
Building FAIR Functionality: Annotating Events in Time Series Data Using Hierarchical Event Descriptors (HED)
por: Robbins, Kay, et al.
Publicado: (2021) -
Correction to: Building FAIR Functionality: Annotating Events in Time Series Data Using Hierarchical Event Descriptors (HED)
por: Robbins, Kay, et al.
Publicado: (2023) -
Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG
por: Bigdely-Shamlo, Nima, et al.
Publicado: (2016) -
In COM we trust: Feasibility of USB-based event marking
por: Appelhoff, Stefan, et al.
Publicado: (2021) -
Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent Time-Frequency Features
por: Meng, Jia, et al.
Publicado: (2012)