Cargando…

Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia

Sensitive motor outcome measures are needed to efficiently evaluate novel therapies for neurodegenerative diseases. Devices that can passively collect movement data in the home setting can provide continuous and ecologically valid measures of motor function. We tested the hypothesis that movement pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Anoopum S., Luddy, Anna C., Khan, Nergis C., Reiling, Sara, Thornton, Jennifer Karlin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926103/
https://www.ncbi.nlm.nih.gov/pubmed/35294727
http://dx.doi.org/10.1007/s12311-022-01385-5
_version_ 1784670165636481024
author Gupta, Anoopum S.
Luddy, Anna C.
Khan, Nergis C.
Reiling, Sara
Thornton, Jennifer Karlin
author_facet Gupta, Anoopum S.
Luddy, Anna C.
Khan, Nergis C.
Reiling, Sara
Thornton, Jennifer Karlin
author_sort Gupta, Anoopum S.
collection PubMed
description Sensitive motor outcome measures are needed to efficiently evaluate novel therapies for neurodegenerative diseases. Devices that can passively collect movement data in the home setting can provide continuous and ecologically valid measures of motor function. We tested the hypothesis that movement patterns extracted from continuous wrist accelerometer data capture motor impairment and disease progression in ataxia-telangiectasia. One week of continuous wrist accelerometer data were collected from 31 individuals with ataxia-telangiectasia and 27 controls aged 2–20 years old. Longitudinal wrist sensor data were collected in 14 ataxia-telangiectasia participants and 13 controls. A novel algorithm was developed to extract wrist submovements from the velocity time series. Wrist sensor features were compared with caregiver-reported motor function on the Caregiver Priorities and Child Health Index of Life with Disabilities survey and ataxia severity on the neurologist-performed Brief Ataxia Rating Scale. Submovements became smaller, slower, and less variable in ataxia-telangiectasia compared to controls. High-frequency oscillations in submovements were increased, and more variable and low-frequency oscillations were decreased and less variable in ataxia-telangiectasia. Wrist movement features correlated strongly with ataxia severity and caregiver-reported function, demonstrated high reliability, and showed significant progression over a 1-year interval. These results show that passive wrist sensor data produces interpretable and reliable measures that are sensitive to disease change, supporting their potential as ecologically valid motor biomarkers. The ability to obtain these measures from a low-cost sensor that is ubiquitous in smartwatches could help facilitate neurological care and participation in research regardless of geography and socioeconomic status. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12311-022-01385-5.
format Online
Article
Text
id pubmed-8926103
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-89261032022-03-17 Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia Gupta, Anoopum S. Luddy, Anna C. Khan, Nergis C. Reiling, Sara Thornton, Jennifer Karlin Cerebellum Original Article Sensitive motor outcome measures are needed to efficiently evaluate novel therapies for neurodegenerative diseases. Devices that can passively collect movement data in the home setting can provide continuous and ecologically valid measures of motor function. We tested the hypothesis that movement patterns extracted from continuous wrist accelerometer data capture motor impairment and disease progression in ataxia-telangiectasia. One week of continuous wrist accelerometer data were collected from 31 individuals with ataxia-telangiectasia and 27 controls aged 2–20 years old. Longitudinal wrist sensor data were collected in 14 ataxia-telangiectasia participants and 13 controls. A novel algorithm was developed to extract wrist submovements from the velocity time series. Wrist sensor features were compared with caregiver-reported motor function on the Caregiver Priorities and Child Health Index of Life with Disabilities survey and ataxia severity on the neurologist-performed Brief Ataxia Rating Scale. Submovements became smaller, slower, and less variable in ataxia-telangiectasia compared to controls. High-frequency oscillations in submovements were increased, and more variable and low-frequency oscillations were decreased and less variable in ataxia-telangiectasia. Wrist movement features correlated strongly with ataxia severity and caregiver-reported function, demonstrated high reliability, and showed significant progression over a 1-year interval. These results show that passive wrist sensor data produces interpretable and reliable measures that are sensitive to disease change, supporting their potential as ecologically valid motor biomarkers. The ability to obtain these measures from a low-cost sensor that is ubiquitous in smartwatches could help facilitate neurological care and participation in research regardless of geography and socioeconomic status. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12311-022-01385-5. Springer US 2022-03-16 2023 /pmc/articles/PMC8926103/ /pubmed/35294727 http://dx.doi.org/10.1007/s12311-022-01385-5 Text en © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Article
Gupta, Anoopum S.
Luddy, Anna C.
Khan, Nergis C.
Reiling, Sara
Thornton, Jennifer Karlin
Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title_full Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title_fullStr Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title_full_unstemmed Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title_short Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia
title_sort real-life wrist movement patterns capture motor impairment in individuals with ataxia-telangiectasia
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926103/
https://www.ncbi.nlm.nih.gov/pubmed/35294727
http://dx.doi.org/10.1007/s12311-022-01385-5
work_keys_str_mv AT guptaanoopums reallifewristmovementpatternscapturemotorimpairmentinindividualswithataxiatelangiectasia
AT luddyannac reallifewristmovementpatternscapturemotorimpairmentinindividualswithataxiatelangiectasia
AT khannergisc reallifewristmovementpatternscapturemotorimpairmentinindividualswithataxiatelangiectasia
AT reilingsara reallifewristmovementpatternscapturemotorimpairmentinindividualswithataxiatelangiectasia
AT thorntonjenniferkarlin reallifewristmovementpatternscapturemotorimpairmentinindividualswithataxiatelangiectasia