Cargando…
Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates
The study of chiral self-sorting is extremely important for understanding biological systems and for developing applications for the biomedical field. In this study, we attempted unprecedented chiral self-sorting supramolecular polymerization accompanying helical inversion with Ag(+) in one enantiom...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926169/ https://www.ncbi.nlm.nih.gov/pubmed/35414882 http://dx.doi.org/10.1039/d1sc06413d |
_version_ | 1784670180036575232 |
---|---|
author | Ok, Mirae Kim, Ka Young Choi, Heekyoung Kim, Seonghan Lee, Shim Sung Cho, Jaeheung Jung, Sung Ho Jung, Jong Hwa |
author_facet | Ok, Mirae Kim, Ka Young Choi, Heekyoung Kim, Seonghan Lee, Shim Sung Cho, Jaeheung Jung, Sung Ho Jung, Jong Hwa |
author_sort | Ok, Mirae |
collection | PubMed |
description | The study of chiral self-sorting is extremely important for understanding biological systems and for developing applications for the biomedical field. In this study, we attempted unprecedented chiral self-sorting supramolecular polymerization accompanying helical inversion with Ag(+) in one enantiomeric component. Bola-type terpyridine-based ligands (R-L(1) and S-L(1)) comprising R- or S-alanine analogs were synthesized. First, R-L(1) dissolved in DMSO/H(2)O (1 : 1, v/v) forms right-handed helical fibers (aggregate I) via supramolecular polymerization. However, after the addition of AgNO(3) (0.2–1.1 equiv.) to the R-L(1) ligand, in particular, it was found that aggregate II with left-handed helicity is generated from the [R-L(1)(AgNO(3))(2)] complex through the [R-L(1)Ag](+) complex via the dissociation of aggregate I by a multistep with an off pathway, thus demonstrating interesting self-sorting properties driven by helicity and shape discrimination. In addition, the [R-L(1)(AgNO(3))(2)] complex, which acted as a building block to generate aggregate III with a spherical structure, existed as a metastable product during the formation of aggregate II in the presence of 1.2–1.5 equiv. of AgNO(3). Furthermore, the AFM and CD results of two samples prepared using aggregates I and III with different volume ratios were similar to those obtained upon the addition of AgNO(3) to free R-L(1). These findings suggest that homochiral self-sorting in a mixture system occurred by the generation of aggregate II composed of the [R-L(1)Ag](+) complex via the rearrangement of both, aggregates I and III. This is a unique example of helicity- and shape-driven chiral self-sorting supramolecular polymerization induced by Ag(+) starting from one enantiomeric component. This research will improve understanding of homochirality in complex biological models and contribute to the development of new chiral materials and catalysts for asymmetric synthesis. |
format | Online Article Text |
id | pubmed-8926169 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89261692022-04-11 Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates Ok, Mirae Kim, Ka Young Choi, Heekyoung Kim, Seonghan Lee, Shim Sung Cho, Jaeheung Jung, Sung Ho Jung, Jong Hwa Chem Sci Chemistry The study of chiral self-sorting is extremely important for understanding biological systems and for developing applications for the biomedical field. In this study, we attempted unprecedented chiral self-sorting supramolecular polymerization accompanying helical inversion with Ag(+) in one enantiomeric component. Bola-type terpyridine-based ligands (R-L(1) and S-L(1)) comprising R- or S-alanine analogs were synthesized. First, R-L(1) dissolved in DMSO/H(2)O (1 : 1, v/v) forms right-handed helical fibers (aggregate I) via supramolecular polymerization. However, after the addition of AgNO(3) (0.2–1.1 equiv.) to the R-L(1) ligand, in particular, it was found that aggregate II with left-handed helicity is generated from the [R-L(1)(AgNO(3))(2)] complex through the [R-L(1)Ag](+) complex via the dissociation of aggregate I by a multistep with an off pathway, thus demonstrating interesting self-sorting properties driven by helicity and shape discrimination. In addition, the [R-L(1)(AgNO(3))(2)] complex, which acted as a building block to generate aggregate III with a spherical structure, existed as a metastable product during the formation of aggregate II in the presence of 1.2–1.5 equiv. of AgNO(3). Furthermore, the AFM and CD results of two samples prepared using aggregates I and III with different volume ratios were similar to those obtained upon the addition of AgNO(3) to free R-L(1). These findings suggest that homochiral self-sorting in a mixture system occurred by the generation of aggregate II composed of the [R-L(1)Ag](+) complex via the rearrangement of both, aggregates I and III. This is a unique example of helicity- and shape-driven chiral self-sorting supramolecular polymerization induced by Ag(+) starting from one enantiomeric component. This research will improve understanding of homochirality in complex biological models and contribute to the development of new chiral materials and catalysts for asymmetric synthesis. The Royal Society of Chemistry 2022-02-09 /pmc/articles/PMC8926169/ /pubmed/35414882 http://dx.doi.org/10.1039/d1sc06413d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Ok, Mirae Kim, Ka Young Choi, Heekyoung Kim, Seonghan Lee, Shim Sung Cho, Jaeheung Jung, Sung Ho Jung, Jong Hwa Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title | Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title_full | Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title_fullStr | Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title_full_unstemmed | Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title_short | Helicity-driven chiral self-sorting supramolecular polymerization with Ag(+): right- and left-helical aggregates |
title_sort | helicity-driven chiral self-sorting supramolecular polymerization with ag(+): right- and left-helical aggregates |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926169/ https://www.ncbi.nlm.nih.gov/pubmed/35414882 http://dx.doi.org/10.1039/d1sc06413d |
work_keys_str_mv | AT okmirae helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT kimkayoung helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT choiheekyoung helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT kimseonghan helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT leeshimsung helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT chojaeheung helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT jungsungho helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates AT jungjonghwa helicitydrivenchiralselfsortingsupramolecularpolymerizationwithagrightandlefthelicalaggregates |