Cargando…

Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation

γ-Al(2)O(3) nanoparticles promote pyrolytic carbon deposition of CH(4) at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we h...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Masanori, Zhao, Qi, Goto, Shunsuke, Gu, Yu, Toriyama, Takaaki, Yamamoto, Tomokazu, Nishihara, Hirotomo, Aziz, Alex, Crespo-Otero, Rachel, Di Tommaso, Devis, Tamura, Masazumi, Tomishige, Keiichi, Kyotani, Takashi, Yamazaki, Kaoru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926170/
https://www.ncbi.nlm.nih.gov/pubmed/35414888
http://dx.doi.org/10.1039/d1sc06578e
_version_ 1784670180274601984
author Yamamoto, Masanori
Zhao, Qi
Goto, Shunsuke
Gu, Yu
Toriyama, Takaaki
Yamamoto, Tomokazu
Nishihara, Hirotomo
Aziz, Alex
Crespo-Otero, Rachel
Di Tommaso, Devis
Tamura, Masazumi
Tomishige, Keiichi
Kyotani, Takashi
Yamazaki, Kaoru
author_facet Yamamoto, Masanori
Zhao, Qi
Goto, Shunsuke
Gu, Yu
Toriyama, Takaaki
Yamamoto, Tomokazu
Nishihara, Hirotomo
Aziz, Alex
Crespo-Otero, Rachel
Di Tommaso, Devis
Tamura, Masazumi
Tomishige, Keiichi
Kyotani, Takashi
Yamazaki, Kaoru
author_sort Yamamoto, Masanori
collection PubMed
description γ-Al(2)O(3) nanoparticles promote pyrolytic carbon deposition of CH(4) at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH(4) activation for NPG formation on γ-Al(2)O(3) nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al(2)O(3) nanoparticles following surface activation by CH(4). The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH(4) make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth.
format Online
Article
Text
id pubmed-8926170
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-89261702022-04-11 Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation Yamamoto, Masanori Zhao, Qi Goto, Shunsuke Gu, Yu Toriyama, Takaaki Yamamoto, Tomokazu Nishihara, Hirotomo Aziz, Alex Crespo-Otero, Rachel Di Tommaso, Devis Tamura, Masazumi Tomishige, Keiichi Kyotani, Takashi Yamazaki, Kaoru Chem Sci Chemistry γ-Al(2)O(3) nanoparticles promote pyrolytic carbon deposition of CH(4) at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH(4) activation for NPG formation on γ-Al(2)O(3) nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al(2)O(3) nanoparticles following surface activation by CH(4). The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH(4) make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth. The Royal Society of Chemistry 2022-02-22 /pmc/articles/PMC8926170/ /pubmed/35414888 http://dx.doi.org/10.1039/d1sc06578e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Yamamoto, Masanori
Zhao, Qi
Goto, Shunsuke
Gu, Yu
Toriyama, Takaaki
Yamamoto, Tomokazu
Nishihara, Hirotomo
Aziz, Alex
Crespo-Otero, Rachel
Di Tommaso, Devis
Tamura, Masazumi
Tomishige, Keiichi
Kyotani, Takashi
Yamazaki, Kaoru
Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title_full Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title_fullStr Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title_full_unstemmed Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title_short Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
title_sort porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926170/
https://www.ncbi.nlm.nih.gov/pubmed/35414888
http://dx.doi.org/10.1039/d1sc06578e
work_keys_str_mv AT yamamotomasanori porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT zhaoqi porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT gotoshunsuke porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT guyu porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT toriyamatakaaki porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT yamamototomokazu porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT nishiharahirotomo porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT azizalex porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT crespooterorachel porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT ditommasodevis porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT tamuramasazumi porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT tomishigekeiichi porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT kyotanitakashi porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation
AT yamazakikaoru porousnanographeneformationongaluminananoparticlesviatransitionmetalfreemethaneactivation