Cargando…

An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor

In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The divers...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhushan, Bhaskar, Granata, Daniele, Kaas, Christian S., Kasimova, Marina A., Ren, Qiansheng, Cramer, Christian N., White, Mark D., Hansen, Ann Maria K., Fledelius, Christian, Invernizzi, Gaetano, Deibler, Kristine, Coleman, Oliver D., Zhao, Xin, Qu, Xinping, Liu, Haimo, Zurmühl, Silvana S., Kodra, Janos T., Kawamura, Akane, Münzel, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926291/
https://www.ncbi.nlm.nih.gov/pubmed/35414877
http://dx.doi.org/10.1039/d1sc06844j
_version_ 1784670210343567360
author Bhushan, Bhaskar
Granata, Daniele
Kaas, Christian S.
Kasimova, Marina A.
Ren, Qiansheng
Cramer, Christian N.
White, Mark D.
Hansen, Ann Maria K.
Fledelius, Christian
Invernizzi, Gaetano
Deibler, Kristine
Coleman, Oliver D.
Zhao, Xin
Qu, Xinping
Liu, Haimo
Zurmühl, Silvana S.
Kodra, Janos T.
Kawamura, Akane
Münzel, Martin
author_facet Bhushan, Bhaskar
Granata, Daniele
Kaas, Christian S.
Kasimova, Marina A.
Ren, Qiansheng
Cramer, Christian N.
White, Mark D.
Hansen, Ann Maria K.
Fledelius, Christian
Invernizzi, Gaetano
Deibler, Kristine
Coleman, Oliver D.
Zhao, Xin
Qu, Xinping
Liu, Haimo
Zurmühl, Silvana S.
Kodra, Janos T.
Kawamura, Akane
Münzel, Martin
author_sort Bhushan, Bhaskar
collection PubMed
description In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure–activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development.
format Online
Article
Text
id pubmed-8926291
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-89262912022-04-11 An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor Bhushan, Bhaskar Granata, Daniele Kaas, Christian S. Kasimova, Marina A. Ren, Qiansheng Cramer, Christian N. White, Mark D. Hansen, Ann Maria K. Fledelius, Christian Invernizzi, Gaetano Deibler, Kristine Coleman, Oliver D. Zhao, Xin Qu, Xinping Liu, Haimo Zurmühl, Silvana S. Kodra, Janos T. Kawamura, Akane Münzel, Martin Chem Sci Chemistry In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure–activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development. The Royal Society of Chemistry 2022-02-24 /pmc/articles/PMC8926291/ /pubmed/35414877 http://dx.doi.org/10.1039/d1sc06844j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Bhushan, Bhaskar
Granata, Daniele
Kaas, Christian S.
Kasimova, Marina A.
Ren, Qiansheng
Cramer, Christian N.
White, Mark D.
Hansen, Ann Maria K.
Fledelius, Christian
Invernizzi, Gaetano
Deibler, Kristine
Coleman, Oliver D.
Zhao, Xin
Qu, Xinping
Liu, Haimo
Zurmühl, Silvana S.
Kodra, Janos T.
Kawamura, Akane
Münzel, Martin
An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title_full An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title_fullStr An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title_full_unstemmed An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title_short An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
title_sort integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the gip receptor
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926291/
https://www.ncbi.nlm.nih.gov/pubmed/35414877
http://dx.doi.org/10.1039/d1sc06844j
work_keys_str_mv AT bhushanbhaskar anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT granatadaniele anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kaaschristians anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kasimovamarinaa anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT renqiansheng anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT cramerchristiann anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT whitemarkd anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT hansenannmariak anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT fledeliuschristian anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT invernizzigaetano anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT deiblerkristine anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT colemanoliverd anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT zhaoxin anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT quxinping anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT liuhaimo anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT zurmuhlsilvanas anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kodrajanost anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kawamuraakane anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT munzelmartin anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT bhushanbhaskar integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT granatadaniele integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kaaschristians integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kasimovamarinaa integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT renqiansheng integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT cramerchristiann integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT whitemarkd integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT hansenannmariak integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT fledeliuschristian integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT invernizzigaetano integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT deiblerkristine integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT colemanoliverd integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT zhaoxin integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT quxinping integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT liuhaimo integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT zurmuhlsilvanas integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kodrajanost integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT kawamuraakane integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor
AT munzelmartin integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor