Cargando…
An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor
In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The divers...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926291/ https://www.ncbi.nlm.nih.gov/pubmed/35414877 http://dx.doi.org/10.1039/d1sc06844j |
_version_ | 1784670210343567360 |
---|---|
author | Bhushan, Bhaskar Granata, Daniele Kaas, Christian S. Kasimova, Marina A. Ren, Qiansheng Cramer, Christian N. White, Mark D. Hansen, Ann Maria K. Fledelius, Christian Invernizzi, Gaetano Deibler, Kristine Coleman, Oliver D. Zhao, Xin Qu, Xinping Liu, Haimo Zurmühl, Silvana S. Kodra, Janos T. Kawamura, Akane Münzel, Martin |
author_facet | Bhushan, Bhaskar Granata, Daniele Kaas, Christian S. Kasimova, Marina A. Ren, Qiansheng Cramer, Christian N. White, Mark D. Hansen, Ann Maria K. Fledelius, Christian Invernizzi, Gaetano Deibler, Kristine Coleman, Oliver D. Zhao, Xin Qu, Xinping Liu, Haimo Zurmühl, Silvana S. Kodra, Janos T. Kawamura, Akane Münzel, Martin |
author_sort | Bhushan, Bhaskar |
collection | PubMed |
description | In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure–activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development. |
format | Online Article Text |
id | pubmed-8926291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89262912022-04-11 An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor Bhushan, Bhaskar Granata, Daniele Kaas, Christian S. Kasimova, Marina A. Ren, Qiansheng Cramer, Christian N. White, Mark D. Hansen, Ann Maria K. Fledelius, Christian Invernizzi, Gaetano Deibler, Kristine Coleman, Oliver D. Zhao, Xin Qu, Xinping Liu, Haimo Zurmühl, Silvana S. Kodra, Janos T. Kawamura, Akane Münzel, Martin Chem Sci Chemistry In any drug discovery effort, the identification of hits for further optimisation is of crucial importance. For peptide therapeutics, display technologies such as mRNA display have emerged as powerful methodologies to identify these desired de novo hit ligands against targets of interest. The diverse peptide libraries are genetically encoded in these technologies, allowing for next-generation sequencing to be used to efficiently identify the binding ligands. Despite the vast datasets that can be generated, current downstream methodologies, however, are limited by low throughput validation processes, including hit prioritisation, peptide synthesis, biochemical and biophysical assays. In this work we report a highly efficient strategy that combines bioinformatic analysis with state-of-the-art high throughput peptide synthesis to identify nanomolar cyclic peptide (CP) ligands of the human glucose-dependent insulinotropic peptide receptor (hGIP-R). Furthermore, our workflow is able to discriminate between functional and remote binding non-functional ligands. Efficient structure–activity relationship analysis (SAR) combined with advanced in silico structural studies allow deduction of a thorough and holistic binding model which informs further chemical optimisation, including efficient half-life extension. We report the identification and design of the first de novo, GIP-competitive, incretin receptor family-selective CPs, which exhibit an in vivo half-life up to 10.7 h in rats. The workflow should be generally applicable to any selection target, improving and accelerating hit identification, validation, characterisation, and prioritisation for therapeutic development. The Royal Society of Chemistry 2022-02-24 /pmc/articles/PMC8926291/ /pubmed/35414877 http://dx.doi.org/10.1039/d1sc06844j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Bhushan, Bhaskar Granata, Daniele Kaas, Christian S. Kasimova, Marina A. Ren, Qiansheng Cramer, Christian N. White, Mark D. Hansen, Ann Maria K. Fledelius, Christian Invernizzi, Gaetano Deibler, Kristine Coleman, Oliver D. Zhao, Xin Qu, Xinping Liu, Haimo Zurmühl, Silvana S. Kodra, Janos T. Kawamura, Akane Münzel, Martin An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title | An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title_full | An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title_fullStr | An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title_full_unstemmed | An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title_short | An integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the GIP receptor |
title_sort | integrated platform approach enables discovery of potent, selective and ligand-competitive cyclic peptides targeting the gip receptor |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926291/ https://www.ncbi.nlm.nih.gov/pubmed/35414877 http://dx.doi.org/10.1039/d1sc06844j |
work_keys_str_mv | AT bhushanbhaskar anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT granatadaniele anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kaaschristians anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kasimovamarinaa anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT renqiansheng anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT cramerchristiann anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT whitemarkd anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT hansenannmariak anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT fledeliuschristian anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT invernizzigaetano anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT deiblerkristine anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT colemanoliverd anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT zhaoxin anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT quxinping anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT liuhaimo anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT zurmuhlsilvanas anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kodrajanost anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kawamuraakane anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT munzelmartin anintegratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT bhushanbhaskar integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT granatadaniele integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kaaschristians integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kasimovamarinaa integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT renqiansheng integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT cramerchristiann integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT whitemarkd integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT hansenannmariak integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT fledeliuschristian integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT invernizzigaetano integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT deiblerkristine integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT colemanoliverd integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT zhaoxin integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT quxinping integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT liuhaimo integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT zurmuhlsilvanas integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kodrajanost integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT kawamuraakane integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor AT munzelmartin integratedplatformapproachenablesdiscoveryofpotentselectiveandligandcompetitivecyclicpeptidestargetingthegipreceptor |