Cargando…
Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity
Algorithmic biases that favor majority populations pose a key challenge to the application of machine learning for precision medicine. Here, we assessed such bias in prediction models of behavioral phenotypes from brain functional magnetic resonance imaging. We examined the prediction bias using two...
Autores principales: | Li, Jingwei, Bzdok, Danilo, Chen, Jianzhong, Tam, Angela, Ooi, Leon Qi Rong, Holmes, Avram J., Ge, Tian, Patil, Kaustubh R., Jabbi, Mbemba, Eickhoff, Simon B., Yeo, B. T. Thomas, Genon, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926333/ https://www.ncbi.nlm.nih.gov/pubmed/35294251 http://dx.doi.org/10.1126/sciadv.abj1812 |
Ejemplares similares
-
Sex Classification by Resting State Brain Connectivity
por: Weis, Susanne, et al.
Publicado: (2020) -
Relationship between prediction accuracy and feature importance reliability: An empirical and theoretical study
por: Chen, Jianzhong, et al.
Publicado: (2023) -
Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
por: Chen, Jianzhong, et al.
Publicado: (2022) -
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity
por: Yan, Xiaoxuan, et al.
Publicado: (2023) -
Meta-matching as a simple framework to translate phenotypic predictive models from big to small data
por: He, Tong, et al.
Publicado: (2022)