Cargando…

Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials

Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked d...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Honglie, Luo, Guoquan, Ji, Ziyao, Bo, Renheng, Xue, Zhaoguo, Yan, Dongjia, Zhang, Fan, Bai, Ke, Liu, Jianxing, Cheng, Xu, Pang, Wenbo, Shen, Zhangming, Zhang, Yihui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926335/
https://www.ncbi.nlm.nih.gov/pubmed/35294232
http://dx.doi.org/10.1126/sciadv.abm3785
Descripción
Sumario:Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked device layout can overcome this limitation, the soft elastomers used in previous studies could highly restrict the deformation of stretchable interconnects. Here, we introduce stacked multilayer network materials as a general platform to incorporate individual components and stretchable interconnects, without posing any essential constraint to their deformations. Quantitative analyses show a substantial enhancement (e.g., by ~7.5 times) of elastic stretchability of serpentine interconnects as compared to that based on stacked soft elastomers. The proposed strategy allows demonstration of a miniaturized electronic system (11 mm by 10 mm), with a moderate elastic stretchability (~20%) and an unprecedented areal coverage (~110%), which can serve as compass display, somatosensory mouse, and physiological-signal monitor.